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Abstract

We prove that a polynomial fraction of the set of k-component forests in the m × n grid
graph have equal numbers of vertices in each component, for any constant k. This resolves a
conjecture of Charikar, Liu, Liu, and Vuong, and establishes the first provably polynomial-time
algorithm for (exactly or approximately) sampling balanced grid graph partitions according to
the spanning tree distribution, which weights each k-partition according to the product, across
its k pieces, of the number of spanning trees of each piece. Our result follows from a careful
analysis of the probability a uniformly random spanning tree of the grid can be cut into balanced
pieces.

Beyond grids, we show that for a broad family of lattice-like graphs, we achieve balance
up to any multiplicative (1 ± ε) constant with constant probability, and up to an additive
constant with polynomial probability. More generally, we show that, with constant probability,
components derived from uniform spanning trees can approximate any given partition of a planar
region specified by Jordan curves. These results imply polynomial time algorithms for sampling
approximately balanced tree-weighted partitions for lattice-like graphs.

Our results have applications to understanding political districtings, where there is an under-
lying graph of indivisible geographic units that must be partitioned into k population-balanced
connected subgraphs. In this setting, tree-weighted partitions have interesting geometric prop-
erties, and this has stimulated significant effort to develop methods to sample them.

1 Introduction

We consider the following question: given a graph G and an integer constant k, how can one
randomly sample partitions of G into k connected pieces, each of equal size? We address this
question in the context of the spanning tree distribution on partitions, under which the weight of
a partition is proportional to the product of the numbers of spanning trees in each partition class.
This distribution has been the subject of intense research in the context of mathematical approaches
to the analysis of political districtings [8, 10, 17, 26, 13, 27, 29]. While efficient algorithms exist
to sample from this distribution when there are no size constraints on the partition classes, there
is no general recipe for converting such a sampler to an efficient sampler for the balanced spanning
tree distribution, where we condition the spanning tree distribution on the event that the partition
classes are equal in size. For the prototypical case of grid graphs, the following conjecture of
Charikar, Liu, Liu, and Vuong asserted that rejection sampling would suffice:

Conjecture 1 (Charikar, Liu, Liu, and Vuong [10]). For the m × n grid graph, the proportion of
balanced k-partitions under the spanning tree distribution is at least 1/poly(m,n), when k = O(1).
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We confirm this conjecture as follows:

Theorem 2. Let G be an m×n grid graph where m ≥ n and k|m. The probability that a k-partition
from the spanning tree distribution is balanced is at least

1

βk2n5k−5m3k−3
(1)

for a fixed constant β.

We note that the assumption that k divides the longer dimension is mostly for ease of exposition.
With some more effort (and worse constant factors) one could require just k|nm, with essentially
the same proof techniques. Theorem 2 will follow from Theorem 15, which will assert that, for
a uniformly random spanning tree of the m × n grid graph (m ≥ n, k|m), there is a 1/poly(mn)
chance that there are k−1 edges whose removal divides the tree into equal-size components. Section
3 is devoted to proving Theorem 15, along with stronger bounds for the special case of k = 2.

The relative frequency of balanced partitions under the spanning tree distribution is particularly
salient given the significant progress made in sampling algorithms for this distribution. For example,
in 2020, leveraging recent breakthroughs in the polynomial-method approach to Markov chain
mixing, Anari, Liu, Gharan, Vinzant, and Vuong gave an O(N log2N) approximate sampler based
on the ‘down-up’ walk on the complement of k-component forests of an N -vertex graph [1]. In
Section 2.5, we discuss the use of our results in the context of an additional rejection step for
approximate samplers based on Markov chains, and also show how to exactly sample from the
spanning tree distribution on balanced k-partitions in expected time O(N3k−2 logN) for a grid
graph with N vertices. These are the first provably polynomial-time algorithms for (perfectly or
approximately) sampling from the spanning tree distribution on balanced partitions.

In Section 4, we turn to analyze partitions in grid-like graphs under looser notions of balance. If
we are interested in dividing a random spanning tree into components that are only approximately
balanced (up to a (1±ε) multiplicative error), we show on lattice-like graphs (including grids) that
this is possible with constant probability; Corollary 21 gives the precise statement for grids. In
fact, we prove a more general result, which is that a uniform spanning tree on a sufficiently refined
lattice-like graph will, with probability bounded below by a constant, be splittable into components
that approximately match any partition of a region of the plane given by a collection of Jordan
curves (Figure 1). In particular, suppose Λn is a sequence of infinite planar graphs of decreasing
scale embedded in R2 which are lattice-like (see Definition 18). For example, our definition of
“lattice-like” is broad enough to apply almost surely to the sequence where Λn is the Delauney
triangulation of a Poisson point cloud in R2 of rate n. If D is a fixed plane graph, and ΩD,Λn

denotes a region of Λn whose boundary approximates the boundary of the outer face of D, we have
that:

Theorem 3 (Informal version of Theorem 20). Given any plane graph D with k + 1 faces, let
ϕ1, . . . , ϕk ⊆ R2 denote its inner faces. For any ε > 0, as n→∞, there is a constant lower bound,
depending only on the plane graph and ε, on the probability that a random spanning tree T of ΩD,Λn

contains k− 1 edges whose removal disconnects T into components C1, . . . , Ck, where each Ci is at
Hausdorff distance < ε from a corresponding face ϕi of D.

If one is interested in the even stronger condition of additive approximate balance, we show
one can achieve this in lattice-like graphs as well, with an additional assumption regarding the
uniformity of the density of vertices. This stronger assumption would fail, for example, for the
previously mentioned case of Delauney triangulations of random point sets, but would still satisfied
for any finite-degree, doubly-periodic connected plane graph.
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Figure 1: A partition of a region of a lattice-like graph approximating a division of the plane given
by Jordan curves, and induced by the components remaining after deleting the four bright purple
edges from a spanning tree of the region. Theorem 20 shows that given a division of the plane
by curves, a random spanning tree of a sufficiently refined lattice-like graph can, with probability
bounded below by a constant, be cut into components inducing a partition whose classes each has
small Hausdorff distance from the corresponding face of the drawing.

Theorem 4 (Informal version of Theorem 22). If Λn is a sequence of infinite planar graphs of
decreasing scale embedded in R2 which are uniformly lattice-like (see Definition 19) and ΩD,Λn

denotes a region of Λn whose boundary approximates the unit square, then there exists a constant
A > 0 such that as n→∞, the probability a random spanning tree T of ΩD,Λn contains k−1 edges
whose removal produces k pieces whose sizes are equal up to an additive A vertices in each part is
at least 1/poly(n).

Balance up to an additive constant is the best one could hope for in the framework of Theorem 4;
exact balance may not be possible because of the structure of Λn or the way it’s trimmed to
approximate the unit square. However, we expect that even exact balance would be possible with
mild additional assumptions on the local behavior of random walks in the lattice (as well as the
necessary divisibility conditions).

Combining these results with known algorithms and rejection sampling gives corresponding
polynomial time sampling algorithms in all of these settings.

Finally, in Section 5, we empirically evaluate the probabilities that random spanning trees of
10× 10, 50× 50, and 100× 100 grids can be split at various locations into pieces of various sizes.
These experiments visually confirm the analytical results in this paper.

1.1 Random sampling of political districting plans

In the context of the analysis of districting plans, sampling algorithms enable the generation of
large ensembles of plans, which are useful for several purposes (detecting outliers, understanding the
impacts of rules, evaluating the stated intentions of map-drawers, and more). Ensemble analysis has
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been used in many academic studies, including [2, 3, 5, 6, 7, 8, 12, 14, 16, 17, 19, 20, 22, 23, 26, 32],
as well as in mathematicians’ expert reports in court cases [4, 11, 18, 25].

Randomly sampling political districting plans is equivalent to a sampling problem for suitable
partitions of a graph, with vertices representing small geographic regions such as precincts or census
blocks and edges representing adjacencies. Because they represent physical geography, these graphs
are typically planar or nearly planar. While they are not usually perfect grids (except at times in
cities), there is general consensus that grids are the logical simplified setting to first consider. By
going beyond grids to lattice-like graphs, we move to a much more expressive graph class that can
describe significant additional real-world geography.

A districting plan with k districts is a partition of this graph into k pieces, which are generally
required to be connected. Throughout, we will call a partition of a graph into k connected pieces
a k-partition, and we will refer to the k partition classes of a partition as districts.

In the context of redistricting, there are other constraints on partitions one must consider,
including those related to population and shape. Our interest in balanced partitions stems from
common requirements that districts have equal or near-equal populations. While our first main
result resolves a conjecture about exactly balanced partitions, in practice most processes for sam-
pling political districting plans do not aim for exact population balance but instead aim to keep
the population to within a tolerance of 1-2%. This naturally corresponds to the setting of The-
orem 3, where district sizes may vary by a multiplicative 1 ± ε factor. Related to district shape,
the spanning-tree distribution we analyze is targeted by several sampling algorithms designed for
redistricting analysis [8, 17, 26], and has been shown to strongly correlate with geometric properties
intended to capture legal requirements for ‘compactness’ of districts [13, 27, 29].

Unlike Markov chains such as the up-down walk, which operating in a context without balance
constraints, we know that the approaches cited above such as recombination Markov chains can have
exponential mixing time for some special families of graphs (including carefully chosen subgraphs
of the grid) [10]. Even on rectangular grids, recombination chains with strict balance constraints
can fail to be ergodic if there are many small districts [30]. Positive mixing time results for any
reasonable class of graphs are not available. However, by giving the first polynomial lower bounds
in grid and grid-like graphs on the probability of finding edges that cut random spanning trees
in balanced ways, our approach also addresses a crucial factor for Markov chains like those in
[8, 17, 26] that aim to achieve balance by preserving it at every step, by only using such balanced
cuts in transitions.

Other Markov chains employed in the redistricting context include Glauber dynamics for con-
tiguous partitions, which exchange individual vertices between districts. Here, without any addi-
tional constraints or weighting, stationary distributions are uniform on partitions with connected
districts. Mixing time can again be exponential for some classes of graphs [21]. In fact, even in the
absence of balance, it is not known whether the Glauber dynamics has polynomial mixing time for
partitions of grid graphs into k connected pieces, or indeed whether any polynomial time algorithm
to uniformly sample partitions of grid graphs uniformly randomly into k connected pieces exists,
even for k = 2.

1.2 Approach

Rather than working with the tree distribution on partitions, we work with the uniform distribution
on spanning trees. As we prove in Lemma 8, if there is a polynomial lower bound on the probability
a random spanning tree can be split into k equal-sized components, there is a polynomial lower
bound on the probability a random tree-weighted forest with k components is balanced. The
majority of our work therefore focuses on uniformly random spanning trees and the probability
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they can be split into components with desired properties.
Spanning trees of planar graphs are in bijective correspondence with the spanning trees of their

dual graphs: If T is a spanning tree of G, its dual spanning tree T ∗ contains all edges in G∗ whose
corresponding edges are missing from T . The first key idea behind our approach is to study the
structure of T ∗ rather than T . If T is a spanning tree of G with dual tree T ∗, then the k connected
components of T \ e1, . . . , ek−1 are bounded by k cycles in T ∗ ∪ e1 ∪ · · · ∪ ek−1. In particular, to
show that components with certain sizes or structure can be created by removing edges in T , it
suffices to show that suitable boundary cycles almost already exist in T ∗.

The second key idea is to study the probability of such suitable near-cycles occurring in T ∗ by
analyzing the steps of Wilson’s algorithm on the dual graph. For an arbitrary root vertex, Wilson’s
algorithm builds a uniformly random spanning tree by running a series of loop-erased random walks
from arbitrary starting points to the component containing the root [31]. By choosing the root
to be the dual graph vertex corresponding to the exterior face and carefully choosing the starting
points of each random walk, we are able to show the algorithm is sufficiently likely to produce paths
in T ∗ that have the properties we desire.

For some of our results on general lattice sequences, we will use a particular implementation
of Wilson’s algorithm described in Section 4.4 in which, having completed one loop erased random
walk, we (sometimes) choose the next starting point for a new loop-erased random walk as the exit
vertex of simple random walk within the induced subgraph of the already-built tree itself. This
allows us to analyze the progress of the algorithm in long phases that may include many separate
loop-erased random walks, but for which these separate loop-erased random walks can all be seen
as being generated using a single random walk on the graph.

2 Preliminaries

2.1 Notation

For a positive integer n, we denote [n] := {1, 2, . . . , n}. Unless otherwise specified, all graphs we
consider are undirected with no self-loops, but multiple edges may be allowed between any pair of
vertices. The m× n grid graph is the graph with vertex set [m]× [n], with an edge between (i, j)
and (i′, j′) whenever |i′ − i| + |j′ − j| = 1. We always draw grid graphs in a Cartesian coordinate
system, with m being the horizontal dimension and n being the vertical dimension. We denote by
Z2 the infinite grid graph, where the vertex set is Z × Z and the edge relation is the same as in
finite grids.

A forest is a graph with no cycles, and a tree is a connected forest. A k-forest is a forest with
k connected components. A forest is balanced if every connected component has exactly the same
number of vertices. If T is a tree and S ⊆ E(T ), we define T \ S to be the forest F with vertex set
V (F ) := V (T ) and edge set E(F ) := E(T ) \ S. Thus, a tree T is k-splittable if there is some set
S ⊆ E(T ) of size k − 1 such that T \ S is a balanced k-forest.

For a graph H, we let sp(H) denote the number of spanning trees of H. For a k-partition P of
G with districts P1, . . ., Pk, we denote by πsp the spanning tree distribution, given by

πsp(P ) =

∏k
i=1 sp(Pi)

Z
,

where Z is the normalizing constant, also called the partition function, given by

Z =
∑

k-partitions P

k∏
i=1

sp(Pi).
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Note that the uniform distribution over k-forests of G is equivalent to the spanning tree distribution
over k-partitions of G when a forest is identified with its connected components.

2.2 Duality

Let G be a connected, planar graph, and fix an embedding of G in the plane with no edges crossing.
The dual graph of G (with respect to the embedding) is the graph G∗ whose vertices are faces of
G, with an edge between two faces a∗ ∈ V (G∗) and b∗ ∈ V (G∗) whenever the two faces share a
common boundary edge. Note that we count the outer face of G as a vertex of G∗ as well.

For any edge e ∈ E(G), let e∗ ∈ E(G∗) be the edge between the faces it bounds. For any set
of edges S ⊆ E(G), we analogously define S∗ := {e∗ | e ∈ S} ⊆ E(G∗). The following lemma is a
standard result.

Lemma 5. Assume that G is connected and embedded in the plane such that no edge of G has
the same face on both sides. Then e 7→ e∗ is a bijection between edges of G and edges of G∗, and
T 7→ T ∗ := (V (G∗), E(G∗) \ E(T )∗) is a bijection between spanning trees of G and spanning trees
of G∗.

Note that T ∗ does not contain the edges e∗ for each e ∈ T , but rather those edges that are not in
this set. The hypotheses of Lemma 5 hold for all m× n grid graphs with m,n > 1.

2.3 Wilson’s algorithm

Wilson’s algorithm [31] is important for us not just because it samples uniformly random trees
efficiently, thus serving as a key subroutine in our perfect sampling algorithm (See Section 2.5.1),
but also because our proofs rely on running Wilson’s algorithm in a specific way.

For an input graph G, the steps of Wilson’s algorithm are as follows:

1. Set T ← {r} for an arbitrary “root” vertex r ∈ V (G)

2. While T does not connect all vertices of G:

(a) Do a loop-erased random walk1 starting at an arbitrary vertex v /∈ T until it reaches a
vertex of T

(b) Add all vertices and edges along this loop-erased random walk to T

3. Return T

Importantly, it does not matter which vertex is initially chosen as the root, and in each iteration
of the while loop, it does not matter at which vertex not in T the next loop-erased random walk
begins. Regardless of what arbitrary choices are made at these steps, one can prove the end result
is a perfectly uniformly random spanning tree of G. We use this crucial fact in our proofs, analyzing
the process of Wilson’s algorithm (in the dual graph G∗) from carefully-chosen starting vertices.

Recall that the hitting time τu(v) of u from v is the expected time before a simple random walk
reaches v from u, and the commute time between u and v is τu(v) + τv(u). A π-random vertex
of G is a vertex chosen according to the stationary distribution of the simple random walk on G,
π(v) = deg(v)/2m. Wilson characterizes the expected running time of his algorithm (measured by
the number of times we need to find a random neighbor of a vertex) in terms of the commute time
as follows:

1That is, every time the random walk revisits a node u, erase the cycle and resume the random walk from u.
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Proposition 6 (Wilson). The expected number of times we generate a random neighbor for a
vertex in the course of running Wilson’s algorithm on a graph G with root r is precisely the expected
commute time between r and a π-random vertex v.

For general graphs with N vertices and M edges, it is well-known that the hitting time and thus
the commute time between any pair of vertices is at most O(NM) [24]; this implies that Wilson’s
algorithm runs in time O(N2) for any planar graph on N vertices. However, this can be improved
for grid graphs by considering the dual graph and a carefully-chosen root:

Proposition 7. Wilson’s algorithm runs in expected time O(N logN) on the dual of any grid graph
on N vertices, when the root is chosen to be the dual vertex corresponding to the outer face of the
grid graph.

This is easily proved using the characterization of the commute time in terms of effective resistance;
we include a proof in the appendix.

2.4 Splittability and the spanning tree distribution

Here we explicitly connect the uniform distribution over spanning trees of a graph G with the
uniform distribution over k-forests of G. This enables us to analyze the likelihood of obtaining a
balanced partition when sampling from the spanning tree distribution over forests, as the up-down
walk of [10] (approximately) does; see Section 2.5.2.

Lemma 8. If the probability a uniformly random spanning tree of G with N vertices and M edges
is k-splittable is at least α, then the probability a uniformly random k-forest of P is balanced is at
least

α

Nk−1(M −N + 1)k−1
.

The (short) proof of this lemma can be found in the appendix. We now use it to prove Theorem 2

Proof that Theorem 15 implies Theorem 2. Sampling a k-partition P of G according to the span-
ning tree distribution is the same as sampling a k-forest F of G uniformly at random and then
considering its connected components. By Theorem 15, the probability that a uniformly random
spanning tree T of G is k-splittable is a least 1

βk2n3k−3mk−1
for some fixed constant β. By Lemma 8,

as G has nm vertices and strictly less than 2nm edges, the probability a uniformly random k-forest
is balanced is therefore at most 1

βk2n5k−5m3k−3
.

There is hope this bound could be improved by studying random forests directly, rather than
studying spanning trees and then considering cutting them to obtain forests.

2.5 Algorithms for sampling balanced tree-weighted partitions

Our theorems imply that known approaches sampling (not necessarily balanced) k-partitions ac-
cording to the spanning tree distribution in polynomial time can be combined with a rejection
sampling step to obtain an expected polynomial time algorithm for sampling balanced k-partitions.
Here we present two methods by which this could be done, for the case of sampling exactly balanced
k-partitions.
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2.5.1 Perfectly sampling balanced k-partitions with Wilson’s algorithm

Wilson’s algorithm generates a perfectly uniform random spanning tree of a graph G. We can use
it to randomly sample a balanced k-partition as follows.

1. Uniformly sample a random spanning tree T of G using Wilson’s algorithm.

2. Check if T has k − 1 edges whose removal disconnects T into k components of equal size. If
no, reject and return to step 1.

3. If yes, create a k-partition P of G comprised of the connected components when these k − 1
edges are removed from T .

4. Create a graph G/P which contracts each district of P into a single point and retains all
edges between components with the appropriate multiplicity.

5. Compute the number s of spanning trees of G/P .

6. Return P with probability 1/s. With the remaining probability (s − 1)/s reject and return
to step 1.

Theorem 9. For N -vertex grid graphs, this algorithm produces a balanced k-partition drawn per-
fectly from the spanning tree distribution in expected running time O(N3k−2 logN).

See the appendix for a proof of this theorem. Briefly, the expected run time bounds are because
it takes expected time O(N logN) steps to sample a random spanning tree and check if it is k-
splittable, O(N2k−2) attempts in expectation to see a k-splittable tree, and O(Nk−1) attempts to
be successful in the final rejection of Step 5, by Theorem 15.

2.5.2 Approximately sampling balanced k-partitions with the up-down walk

An alternate method using the up-down Markov chain described in Charikar et al. can produce an
approximately uniformly random k-forest [1, 10]. We briefly motivate and describe this approach
here.

On any graph G, the spanning forests with at least k components form a matroid whose bases
are exactly the k-component spanning forests of G. The well-known down-up chain on bases of a
matroid mixes in time O(r(log r + log log n)) when bases have r elements and the matroid has n
total elements [15]; when run for longer than its mixing time, this chain produces an approximately
uniformly random basis. For k-component forests, this down-up chain randomly removes an edge
of the forest (to produce k + 1 components), and then randomly adds back in an edge connecting
two different components. It’s mixing time is O((N−k)(log(N−k)+log logM)) for graphs with N
vertices and M edges; for constant k, this becomes O(N logN). However, naively implementing one
down-up step requires O(M) time, making the overall time for this chain to produce an approximate
sample O(NM logN).

This was improved in [1] by considering the up-down walk instead. This walk which randomly
adds an edge to the forest. If adding this edge creates a cycle, a random edge of the cycle is removed.
If adding this edge did not create a cycle (e.g. the edge connected two components of the forest)
then a random edge of the forest is removed. This chain has mixing time O(M logM) for graphs
with M edges, as the up-down walk can also be viewed as the down-up walk on the dual matroid
whose bases are the complements of k-component forests. Using a link-cut tree data structure,
each up-down step can be implemented in amortized quasi-constant time, resulting in an overall
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runtime of O(M log2M) to produce one random sample. For planar graphs where M = O(N), this
mixing time is O(N log2N). It is this up-down chain, rather than the usual down-up chain, that
we will use.

The following is our algorithm for approximately randomly sampling a balanced k-forest of a
N -vertex graph.

1. Run the up-down Markov chain on k-forests for some fixed amount of time longer than its
mixing time.

2. If the current state of the chain is a balanced k-forest, return the partition P consisting of
the connected components of the forest. Else, return to step 1 and repeat.

Theorem 10. For N -vertex grid graphs, this algorithm produces a balanced k-partition drawn
approximately from the spanning tree distribution in expected running time O(N4k−3 log2N).

See the appendix for a proof of this theorem; briefly, the expected running time is because it
takes O(N log2N) steps to approximately sample a random k-forest and O(N4k−4) attempts in
expectation to see a balanced one, by Theorem 2. Note that, with the relatively crude estimates
we employ to deduce Theorem 2 from Theorem 15 (in Section 2.4), the runtime we prove for this
approximate sampling approach is actually worse than for the exact sampler above. There is little
reason to believe this to be the truth, however.

3 Exact balance on grid graphs

3.1 Exactly balanced bipartitions

In this section we prove the following:

Theorem 11. Let G be a grid graph with N vertices, where N is even. The probability that a
uniformly random spanning tree T of G is 2-splittable is at least 1/N2.

In fact, we prove a stronger result, namely that specific edges near the center of the grid have a
decent probability of being the edge that splits the tree. Formally, If G is an m× n grid graph, we
define a horizontal central edge of G to be an edge of the form {(i, j), (i, j + 1)} that is as close to
the center of G as possible. Note that there may be 1, 2, or 4 horizontal central edges depending
on the parities of m and n.

Lemma 12. Let G be an m × n grid graph where m ≥ n, and mn is even, and let e ∈ E(G) be
any horizontal central edge of G. Then the probability that a uniformly random spanning tree T of
G contains e, and T \ {e} is a balanced 2-forest, is at least{

1
mn3 if m is even

1
4mn3 if m is odd

.

To prove Lemma 12, we will require two further lemmas.

Lemma 13. Let G be the m × n grid graph induced by the subset [m] × [n] of the grid Z2, and
(i0, j0) ∈ V (G). The probability that a random walk from (i0, j0) in Z2 exits G for the first time to
a vertex (i′, j′) with j′ > 0 is at least j0

n+1 .
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Proof. Let Ḡ be the subset of of Z2 induced by vertices (x, y) with 0 ≤ i ≤ m+ 1, 0 ≤ j ≤ n+ 1.
Consider the experiment in which we conduct a random walk from (i0, j0) ∈ Ḡ, and then flip a

biased coin whose heads probability is j′

n+1 , where (i
′, j′) is the first vertex the walk visits in Ḡ \G.

When (i0, j0) ∈ G, the event that the coin is a heads is contained in the event that the random
walk first exits G to a vertex (i′, j′) with j′ > 0. And for this experiment, we have that the
probability of heads is exactly j0

n+1 , since this holds on the boundary Ḡ \ G, and since this linear
function is the unique harmonic extension of this boundary condition; that is, the unique function
such that the value at each vertex is the average of the values at the neighbors, as is the case for
the probability of heads in the experiment defined above.

Lemma 14. Let X be a discrete probability distribution supported on a set of size k. Then

Pr
x1,x2∼X×X

(x1 = x2) ≥
1

k
.

Proof. Suppose the probabilities of each element in the support of X are p1, p2, . . . , pk, where
these values sum to one. Then the probability that two independent samples are the same is
given by

∑k
i=1 p

2
i . Let p = (p1, p2, . . . , pk) and let v =

(
1
k ,

1
k , . . . ,

1
k

)
be length k vectors. We see

||p||2 =
∑k

i=1 p
2
i , ||v||2 = 1/k, and |⟨p,v⟩|2 = 1/k2, so the lemma follows immediately from the

Cauchy-Schwarz inequality.

Proof of Lemma 12. Assume n > 1 (otherwise there is nothing to show; the probability is one).
Then note that Lemma 5 applies toG. We first consider the case where n is odd (sommust be even).
In this case there is a unique horizontal central edge e, connecting the vertices (m/2, (n + 1)/2)
and (m/2 + 1, (n + 1)/2). Let G∗ be the dual graph of G in the plane, and denote the outer face
by r∗ ∈ V (G∗). Let a∗ ∈ V (G∗) be the face above e and let b∗ ∈ V (G∗) be the face below e, as in
Figure 2.

Consider the following algorithm for generating a uniformly random spanning tree T of G. Run
Wilson’s algorithm on G∗ with r∗ as the root, starting the first loop-erased random walk from a∗

and the second random walk from b∗ (if it is not already added to the tree in the first random
walk). The remaining random walks in Wilson’s algorithm can be executed from arbitrary starting
points. This gives us spanning tree T ∗ of G∗. We then output the primal tree T whose dual is T ∗.
Since Wilson’s algorithm gives a uniformly random sample from the set of spanning trees of G∗,
and those dual trees are in bijection with the primal spanning trees of G (Lemma 5), this algorithm
gives us a uniformly random sample from the set of spanning trees of G.

We apply Lemma 13 to the (m− 1)× n−1
2 dual sub-grid outlined in the top (red) rectangle in

Figure 2, with initial vertex a∗. Note that j0 = 1 because the coordinate system is shifted so that
a∗ is in the bottom row. Lemma 13 says that a random walk from a∗ will first exit the sub-grid
above, to the left, or to the right (just not below) with probability at least

1
n−1
2 + 1

>
1

(n− 1) + 1
=

1

n
.

This clearly applies to our loop-erased random walk as well: The probability that the first walk in
Wilson’s algorithm, which starts from a∗, makes it to the outer face r∗ without ever entering the
bottom half of the grid is at least 1

n . Assuming this happens, we may then apply the same argument
to the bottom (blue) rectangle, for the next random walk starting from b∗. By independence, with
probability at least 1

n2 , both paths will have made it to r∗ without crossing the horizontal midline.
Assume that this happens, as it does in Figure 2. Let P ∗

a be the path from a∗ to the boundary,
and let P ∗

b be the path from b∗ to the boundary. Since both P ∗
a and P ∗

b will be included in T ∗,

10



P ∗
a

P ∗
b

m

n

X

Z

e

a∗

b∗

W

Y

Figure 2: A possible run of the dual graph spanning tree sampling algorithm in the proof of Lemma
12 when m is odd. In this example, m = 10 and n = 7. The primal graph G is depicted in gray,
and the first two random walks in the dual graph G∗ are depicted in black.

we know that T cannot cross these paths. This means e must be included in T . Moreover, P ∗
a

and P ∗
b completely determine the number of vertices on each side of e in T , as follows. Suppose

there are X vertices in the top-half of the grid to the left of P ∗
a , Y vertices in the top-half of the

grid to the right of P ∗
a , Z vertices in the bottom-half of the grid to the left of P ∗

b , and W vertices
in the bottom-half of the grid to the right of P ∗

b . Then the subtree of T to the left of e will have
X + Z + m

2 vertices, and the subtree to the right of e will have Y +W + m
2 vertices (the m

2 terms
come from the vertices on the horizontal midline). Observe that the distribution, over the random
path P ∗

a , of the possible values of X − Y is independent of and identical to the distribution, over
the random path P ∗

b , of the possible values of W − Z. Both distributions can take any integral
value from −m−1

2 n to m−1
2 n. Thus, applying Lemma 14, we know that, with probability at least

1

(mn−1
2 )− (−mn−1

2 ) + 1
=

1

mn−m+ 1
>

1

mn
,

we have X − Y = W − Z, which implies

X + Z +
m

2
= Y +W +

m

2
,

i.e., the subtrees are balanced.
Thus, we have shown that the probability e is included in a uniformly random spanning tree T

of G and splits it into a balanced 2-forest is at least

1

n2
· 1

mn
=

1

mn3
.

The remaining cases, where n is even, are almost the same. There are just a few minor additional
assumptions we must impose about what happens to the random walks at the very beginning, as
illustrated in Figure 3.

If m is even as well, there are two horizontal central edges bordering the unique central face of
the grid. Without loss of generality, take e to be the top one, then define a∗ and b∗ as before. We

11



a∗

b∗
e

a∗

b∗
e

Figure 3: The cases in the proof of Lemma 12 when m is even, in which we must assume that the
initial steps of the random walk from b∗ takes a specific path into the blue rectangle, from which
it never leaves until hitting the outer face.

suppose that the random walk from b∗ first steps directly downward, as in Figure 3 (left). This
happens with probability 1

4 . From there, by the same arguments as before, noting that the two
subgrids are now each m× (n/2−1), the probabilities that the paths leave their respective red and
blue rectangles at the boundary of the grid are both at least

1(
n
2 − 1

)
+ 1

=
2

n
.

The probabilities that the number of vertices on each side are the same is at least

1

(mn−2
2 )− (−mn−2

2 ) + 1
=

1

mn− 2m+ 1
>

1

mn
.

Thus, the probability that e splits a uniformly random spanning tree T into a balanced 2-forest is
at least

1

4
·
(
2

n

)2

· 1

mn
=

1

mn3
.

Finally, consider the case where m is odd and n is even. Now there are four horizontal central
edges, of which we pick the top-right one without loss of generality. With probability 1

16 , the
random walk from b∗ first steps to the left and then down into the blue rectangle, as in Figure
3 (middle). Now we can again apply the same arguments as above to the subgrids of dimensions
m × (n/2 − 1) showing the probability the remaining paths leave their subgrids at the boundary
of G are both at least 2

m . While the random walk in the top grid no longer begins exactly in the
center of the top grid (it can’t, because this grid is now of even width), the top and bottom grids
are rotationally symmetric, with the top walk beginning just one unit left of center and the bottom
walk beginning one unit right of center. As before, the distributions of difference of the number of
vertices on each side of the path are identical and are supported on sets of size at most mn, so by
Lemma 14, the probability these differences are identical is at least 1

mn . Thus, the probability that
e splits a uniformly random spanning tree T into a balanced 2-forest is at least

1

16
·
(
2

n

)2

· 1

mn
=

1

4mn3
.

We now use this lemma to prove Theorem 11.

12



Proof of Thoerem 11. Recall that N = nm is the total number of vertices. Assuming m ≥ n, we
know that mn3 ≤ m2n2 = N2. Thus, in the case where m is even, we simply choose one of the
horizontal central edges, which, by Lemma 12, splits a random tree into a balanced 2-forest with
probability at least 1

mn3 ≥ 1
N2 . In the case where m is odd (and so n must be even) there are

4 horizontal central edges, each of which will split a random tree into a balanced 2-forest with
probability at least 1

4mn3 . Since these 4 events are mutually exclusive, one of these four will give a
balanced split with probability at least 1

mn3 ≥ 1
N2 .

3.2 Exactly balanced k-partitions

In this section we prove the following:

Theorem 15. For m ≥ n, let G be an m×n grid graph, and let k be a positive integer dividing m.
There exists a set S ⊆ E(G) of size k − 1 such that the probability a uniformly random spanning
tree T of G contains each edge in S, and T \ S is a balanced k-forest, at least

1

βk2n3k−3mk−1
(2)

for a fixed constant β.

The proof proceeds along similar lines as the proof of Lemma 12. We require the following
stronger lemmas about random walks on grids. This is similar to Lemma 13, except that now we
are also not allowed to hit the left or right sides, which makes the proof significantly more involved.
We begin by proving a result about square grids, then extend this to tall thin rectangles.

Lemma 16. For any odd integer ℓ, let G be the (2ℓ+1)× (2ℓ+1) grid graph whose coordinates are
given by {−ℓ, . . . , ℓ}×{0, . . . 2ℓ}. For a random walk in Z2 beginning at vertex (0, 0), the probability
this random walk first exits G to a vertex with coordinate (i, 2ℓ + 1) for some integer −ℓ ≤ i ≤ ℓ,
is at least 1/Bℓ for some constant B.

Proof. Let L denote the event we are interested in, that a random walk in Z2 beginning at vertex
(0, 0) first exits G to a vertex with coordinate (i, 2ℓ+1). Our proof giving a lower bound on Pr(L)
will use the following three claims:

Claim 1. A simple random walk on Z from 0 reaches vertex n within 2n2 steps with probability at
least 1

4 .

Claim 2. For any j, conditioned on the event that a simple random walk on Z from 0 of fixed
length j ≥ x ends at the vertex x > 0, the probability that the walk never revisits 0 is x

j .

Claim 3. There is a constant λ such that for any D, a simple random walk on Z from 0 of length
≤ Dℓ2 has probability ≥ e−λD of never leaving the interval [−ℓ, ℓ].

We give elementary proofs of these claims below, but first let us use them to prove that for an
absolute constant B,

Pr(L) ≥ 1

Bℓ
. (3)

In particular, we will consider a walk of fixed length 40ℓ2, and show that with probability at least
1
Bℓ , such a walk from (0, 0) will exit G from the top side and do so before exiting any other side.

The random walk of length 40ℓ2 is associated to an i.i.d. sequence of length 40ℓ2 over the four
directions in the lattice, which we denote (in cyclic order) by N, E, S, W. We generate the random
walk in two steps:

13



1. We generate a uniform binary sequence of length 40ℓ2 over the symbols {H,V }.

2. We independently replace each symbol H with a symbol E or W with probability 1
2 , and each

symbol V with a symbol N or S with probability 1
2 .

Observe first that, with high probability, there are between 18ℓ2 and 22ℓ2 symbols of each type H
and V after the first step. In particular, we will simply condition on the event that the number of
symbols H and V fall in this particular range. By associating steps S and W to −1 and N and E
to +1, we can associate to the sequence of replacements for the H’s a random walk WH on Z, and
to the sequence of replacements for the V ’s a 1D random walk WV on Z. We need to put a lower
bound on the probability that WH never leaves the interval [−ℓ, ℓ] AND WV reaches 2ℓ+1 without
visiting −1. Conditioned on the lengths of the walks WV ,WH , these are independent events; thus
it suffice to prove lower bounds on the probabilities of these two events conditioned on any fixed
lengths for WV and WH between 18ℓ2 and 22ℓ2.

We first consider the case of WV . We define the events E ′, Ej by

E ′ = {WV reaches 2ℓ+ 1 within 9ℓ2 steps}
Ej = {j is the index of last visit of WV to 2ℓ+ 1 among first 18ℓ2 steps}.

Observe that ⋃
j≤18ℓ2

Ej = E ′. (4)

Since ℓ ≥ 1 implies 2(2ℓ+ 1)2 ≤ 18ℓ2, we have from Claim 1 that

Pr(E ′) ≥ 1
4 . (5)

Now fixing some j ≤ 18ℓ2 steps and conditioning on the event that WV is at 2ℓ+1 on the jth step,
we have from Claim 2 that

Pr (WV never visits −1 before step j |WV at 2ℓ+ 1 on step j)

≥ Pr (WV never revisits 0 before step j |WV at 2ℓ+ on step j) ≥ 2ℓ+ 1

18ℓ2
≥ 1

9ℓ
. (6)

Now (4), (5), and (6) imply that

Pr (WV visits 2ℓ+ 1 before −1) = Pr(E ′) Pr(WV visits 2ℓ+ 1 before −1 | E ′)

= Pr(E ′)
∑
j≤9ℓ2

Pr(Ej | E ′) Pr
(
WV visits 2ℓ+ 1 before −1 | E ′, Ej

)
≥ Pr(E ′)

∑
j≤9ℓ2

Pr(Ej | E ′) Pr
(
WV avoids −1 through step j | E ′, Ej

)
≥ 1

4
· 1
9ℓ

=
1

36ℓ
.

In the final inequality, we have used the fact that for j ≤ 18ℓ2, when conditioning on both events
E ′ and Ej , the initial segment of WV of length j is still a uniformly random walk among all walks
of length j from 0 to 2ℓ + 1, as replacing such an initial segment with any other does not change
the outcome of the events E ′, Ej .
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Finally, since WH is of length ≤ 22ℓ2, we have from Claim 3 (with D = 22) that with probability
at least exp(−22λ), WH never leaves the interval [−ℓ, ℓ]. As we have conditioned ahead of time on
the lengths of these two walks, the events corresponding to the two probabilities are independent,
and so we have

Pr(WV visits 2ℓ+ 1 before −1 AND WH stays in [−ℓ, ℓ]) ≥ 1

Bℓ
,

for an absolute constant B. This completes the proof of (3); it only remains to prove the three
claims.
Proof of Claim 1. Recall that simple random walk begun from s on {0, 1, . . . ,M} reaches an
endpoint of this interval in expected time s(M − s) (see e.g., [24, Proposition 2.1]). Thus a simple
random walk on Z from 0 reaches either −n or n in expected time n2. This means that a simple
random walk from 0 of length ≥ 2n2 reaches −n or n with probability at least 1

2 , as Markov’s

inequality implies that the probability that the hitting time exceeds 2n2 is ≤ n2

2n2 . By symmetry
the probability it reaches n is thus at least 1

4 . This proves Claim 1.

Proof of Claim 2. This is a consequence of Bertrand’s ballot theorem. If the walk of length
j ≥ x ends at the vertex x > 0, it takes R = j+x

2 steps to the right and L = j−x
2 steps to the

left. Bertrand’s ballot theorem then implies that the probability that among any initial nonempty
segment, there is never as many left steps as right steps, is precisely

R− L

R+ L
=

x

j
.

Proof of Claim 3. Choose K = 1
20ℓ

2. Consider K-step simple random walk on Z starting from
0. Observe that by Chernoff bounds, if SK is the location after K steps,

Pr(SK ≥ ℓ/2) ≤ e−(ℓ/2)2/2K = e−5/2 <
1

10
,

It follows that with probability > 9
10 , a simple random walk of length K = 1

20ℓ
2 from 0 in Z will

not end at a vertex SK ≥ ℓ. Recall the standard reflection principle for simple random walk:

Pr(max
j≤n

Sj ≥ T ) = Pr(Sn ≥ T ) + Pr(Sn ≥ T + 1). (7)

It follows that with probability ≥ 8
10 , the walk S0, . . . , SK will never exceed ℓ/2. By symmetry, with

probability ≥ 6
10 ≥

1
2 , it will never leave the interval I = [−ℓ/2, ℓ/2]. Thus, with probability at

least 1
4 , the random walk will both not leave the interval I and end in the nonnegative (respectively,

nonpositive) side of the interval. Repeated applications of this simple fact then give Claim 3 as
follows:

We break the random walk S0, S1, . . . , SDℓ2 into Dℓ2/K = 20D walks, each of length K. From
the observation of the previous paragraph, each such walk has probability at least 1

4 of never
deviating more than ℓ/2 from its starting point and ending to the right or left of its starting point,
according to whichever direction the origin 0 is from the starting point of the walk. In this way,

with probability ≥
(
1
4

)20D
, every walk begins and ends within ℓ/2 of the origin, and never ventures

more than ℓ/2 from its starting point. In this way the whole concatenated walk remains within ℓ of
the origin. This proves Claim 3 with λ = 20 ln 4, and thus completes the proof of the Lemma.

The following lemma extends these results beyond a square region to a narrow rectangle, pro-
vided its width is at least a constant fraction of its height.
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Lemma 17. Suppose there is a constant ε > 0 such that m > εn. Let G be the (m+ 1)× (n+ 1)
grid graph induced by the subset {0, . . . ,m}× {0, . . . , n} of the grid Z2, where m+1 is odd, and let
(i0, j0) = (m2 , 0). The probability that a random walk from (i0, j0) in Z2 exits G for the first time
to a vertex (i′, j′) with j′ = n+ 1 is at least 1

AneA/ε , for a fixed constant A.

Proof. First, we consider the case where m ≥ n. In this case, set ℓ = ⌊(n + 1)/2⌋, so that 2ℓ + 1
is equal to n + 1 or n + 2, whichever is odd. By Lemma 16, there is a constant B such that the
probability the a random walk starting at (m/2, 0) first exits the rectangle at some (i′, n + 1) for
some i′ ∈ [m/2− ℓ,m/2+ ℓ] without ever leaving this interval of x-coordinates is at least 1/Bn for
some constant B. When m ≥ n, this interval is a subset of [0,m], and so the probability a random
walk from (m/2) first exits G to some (i′, n + 1) is at least 1/Bn as well; appropriate choice of A
such that AeA > B proves the lemma.

Now, suppose m < n. For ℓ =
⌊
m−2
4

⌋
, define S0 to be the (2ℓ+1)× (2ℓ+1) square subset of G

induced by the vertices (x, y) with
⌊
m
2

⌋
− ℓ ≤ x ≤

⌊
m
2

⌋
+ ℓ and 0 ≤ y < (2ℓ+ 1). Given a random

walk in Z2 beginning at (m2 , 0), we define L0 to be the event that the random walk exits the square
S0 for the first time along its top side. By Lemma 16, Pr(L0) ≥ 1

Bℓ ≥
1

Bm as ℓ ≤ m. We now show
how one can extend this path from the top of S0 to the top boundary of G in a reasonably likely
way.

For any vertex v ∈ Z2 and positive integer ℓ, for a random walk in Z2 starting from v, define
events LNNW

v,ℓ and LNNE
v,ℓ , as the events that random walk from v first exits the (2ℓ+ 1)× (2ℓ+ 1)

square centered at v along the left half or right half, respectively, of the top side of the square.
In the case where the random walk exits at the middle of the top side of the square, we say both
events occur. In this way, by the symmetries of the square, we have that

Pr(LNNE
v,ℓ ) = Pr(LNNW

v,ℓ ) ≥ 1

8
. (8)

Now, given v and ℓ, we can define LN0
v,ℓ to be the event LNNE

v,ℓ whenever the horizontal coordinate

of v is < m
2 , and to be LNNW

v,ℓ whenever the horizontal coordinate of v is ≥ m
2 .

Let v0 = (m2 , 0), and let v1 be the first vertex outside S0 encountered in a random walk in Z2

starting at v0. For each i ≥ 1, define Si to be the (2ℓ+1)×(2ℓ+1) square centered at vi, and let vi+1

be the first vertex outside Si in a random walk beginning at vi; see Figure 4. To prove the lemma,

note that if L0 occurs and, for each subsequent vi for i = 1, . . . , L where L =
⌈
2(n−2ℓ)
2ℓ+2

⌉
, event

LN0
v,ℓ occurs, then the random walk from (m2 , 0) first exits G to a vertex (i′, n+1): the initial event
L0 ensures it never exits the bottom of the rectangle; the choice of N0 = NNW or N0 = NNE
ensures it never exits the side of the rectangle; and L was chosen large enough to ensure exiting SL
along its top implies exiting G along its top. Therefore, to prove the lemma, it suffices to prove a
lower bound, for any fixed sequence v1, . . . , vL on the product

Pr(L0)
L∏
i=1

Pr(LN0
vi,ℓ
| vi) = Pr(L0)

L∏
i=1

Pr(LN0
vi,ℓ

) ≥ 1

Bm8L
≥ 1

Bn8L
. (9)

Note that the side length of the square is 2ℓ+ 1 ≥ m
2 − 1, and so

L ≤ 2n

2ℓ+ 2
≤ 2n

m/2
=

4n

m
≤ 4n

εn
=

4

ε
. (10)

Combining (9) and (10), we conclude that the probability the random walk S0, S1, S2 . . . , exits at
the very top is at least

1

Bn8L
≥ 1

Bn84/ε
(11)
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S0

v1

v2

v3

v4

n

m

Figure 4: A random walk from the bottom of the red rectangle that first exits at the very top
because each of the events L0,LN0

v1,ℓ
,LN0

v2,ℓ
, . . . ,LN0

vL,ℓ
occur. Here m = 10, n = 16, ℓ = 2, and L = 4.

The event L0 says that the walk from the bottom first exits the bottom purple outlined square to
some vertex v1 above the top. From there, each subsequent event Lvi,ℓ says that the walk exits the
next green square along the top, on the side of the top boundary that is closer to the center.

For an appropriate choice of constant A ≥ max{B, 4 ln 8}, this is of the form 1/(AneA/ε) claimed
in the statement of the Lemma; note using the same constant A twice is just a simplification for
convenient bookkeeping.

We now use these lemmas to prove our main theorem.

Proof of Theorem 15. As in the proof of Lemma 12, we assume n > 1 so that Lemma 5 applies, and
we first consider the case where n is odd. For each 1 ≤ i ≤ k− 1, we define ei := {(mk i,

n+1
2 ), (mk i+

1, n+1
2 )}. As shown in Figure 5, these edges lie on the horizontal midline of the grid and divide it

vertically into k equal pieces. For each index i, let a∗i and b∗i be the faces respectively above and
below ei.

We generate a random spanning tree T of G by running Wilson’s algorithm on the dual
graph G∗ with the outer face r∗ as the root. We start the first 2(k − 1) random walks from
a∗1, b

∗
1, a

∗
2, b

∗
2, . . . , a

∗
k−1, b

∗
k−1, assuming each of these vertices of G∗ has not yet been added to the

tree. The remaining starting points can be determined arbitrarily, and we output the tree T that
is dual to the uniformly random spanning tree T ∗ of G∗ sampled by Wilson’s algorithm. We will
show that S := {e1, e2, . . . , ek} splits G into a balanced k-forest with sufficiently large probability.

We apply Lemma 17 to each of the red and blue rectangles depicted in Figure 5, which all have
grid dimensions (mk − 1)× n−1

2 if m
k is even and m

k ×
n−1
2 if m

k is odd. Independently, by applying
Lemma 17 to each of these grids with ε = 2/k and recalling m ≥ n, each random walk makes it to
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a∗1

b∗1

e1 e2

a∗2

b∗2

n

m

Figure 5: A possible run of the dual graph spanning tree sampling algorithm in the proof of Theorem
15 when m is odd. In this example, m = 12, n = 11, and k = 3. The primal graph G is depicted
in gray, and the first four random walks in the dual graph G∗ are depicted in black.

the far side of its rectangle with probability at least

1

Ane−Ak/2
, (12)

for a fixed constant A.
When this happens, we then apply the same symmetry argument from the proof of Lemma 12

to each pair of rectangles to conclude that, within each red-blue pair of rectangles, the the number
of vertices of G to the left of the paths is equal to the number of vertices in to the right of the
paths with probability at least 1

2p+1 , where

p :=
(m
k
− 1
)
·
(
n− 1

2
− 1

)
is (an upper bound on) the number of vertices of G in each rectangle. Simplifying this expression,
a lower bound on this probability is k

mn . By independence, all pairs of rectangles will be balanced
(as they are in Figure 5) with probability at least(

k

mn

)k−1

,
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in which case T \ S will be a balanced k-forest. Altogether, this will happen with probability at
least (

1

AneAk/2

)2(k−1)

·
(

k

mn

)k−1

≥ 1

βk2mk−1n3k−3

for β a fixed constant.
In the case where n is even, we may apply the same trick as in the proof of Lemma 12, assuming

that each path goes downward one step first. This simply tacks on another factor of 1
4k−1 to the

final probability bound, which can be incorporated into the βk2 term.

4 Approximating Partitions of Lattice Structures

In this section we move beyond grid graphs to a more general class of lattice-like graphs. In Section
4.1, we begin by defining what we mean by lattice-like graphs, including the more general definition
which we use in our multiplicative approximate balance results and the stronger version (uniform
lattice sequences) we use for our additive approximate balance results. In Section 4.2 we state our
results for both lattice classes, including an interesting corollary for grids. In Section 4.3, we give
lower bounds on the probability that a random walk in a lattice sequence follows a given curve in
the plane. These bounds are used in the proofs of both our multiplicative and additive approximate
balance results. In Section 4.4, we apply them to analyze a particular implementation of Wilson’s
algorithm that uses a random walk to choose the next starting place for a loop-erased random
walk, which suffices to prove our multiplicative approximate balance result. Finally, in Section 4.5,
we consider a shrinking sequence of rectangles to correct multiplicative approximate balanced into
additive approximate balance.

4.1 Lattice sequences

We use dist(x, y) to denote graph (e.g. lattice) distances, and d(x, y) and d(X,Y ) to denote
Euclidean distances between points and Hausdorff distance between sets, respectively. Recall that
a curve γ is a continuous function γ : [a, b] → R2 for a < b. Except where specified otherwise,
we take a = 0, b = 1. A plane graph D = (V,Γ) is a drawing of a (planar) graph in the plane
without intersections. In particular, V = V (D) is a finite set of points in the plane R2. Γ is a finite
collection of curves given by continuous functions γi : [0, 1] → R2 such that no two such curves
intersect except possibly at their endpoints, and such that if E is the set of pairs of endpoints:

E = {{γi(0), γi(1)} | i = 1, . . . , |Γ|},

then (V,E) is a graph. The faces of D are the connected components of R2 \
⋃|Γ|

i=1 im(γi) (here
im(γ) is the image of the function γ), and we refer to the unique unbounded face as the outer face.

We state our results in terms of sequences of infinite lattice-like plane graphs that get finer and
finer with properties defined as follows. We consider two slightly different notions: essentially, the
second adds a requirement that fluctuations are bounded at some constant scale, which will be
necessary for our result on partitions that are balanced up to additive error.
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Definition 18. A lattice sequence is a pair ({Λn}, ρ), where {Λn} is sequence of plane graphs with
vertex sets V (Λn) ⊆ R2 for which there are corresponding dual plane graphs Λ∗

n, with each vertex
v ∈ V (Λ∗

n) a point in the corresponding face of Λn, such that for all ε > 0, there exists N such that
for all n > N ,

(a) For any adjacent pair x, y ∈ V (Λ∗
n), d(x, y) < ε,

(b) For any p ∈ R2, the ball Bε(p) contains a vertex of Λ∗
n,

(c) For any dual vertex v and ε > 0 there is a division of the circle Cε,v of radius ε into arcs
A1, . . . , As each of length at most 1

82πε, such that the following holds for each i ∈ [s]: In a
simple random walk v = v0, v1, v2, . . . , with probability at least ρ > 0, letting j the first index
where d(v0, vj) > ε, the straight line segment joining vj−1 with vj passes through Cε,v in Ai.

This definition generalizes sequences of finer and finer grids. Specifically, we claim that the
family of plane graphs {Z2, 12Z

2, 13Z
2, . . . } is a lattice sequence with ρ = 1

8 . Property (a) and (b)
say that, as we increase n, neighboring vertices in 1

nZ
2 become arbitrarily close, and the vertex

set becomes arbitrarily dense. Property (c) holds using the partition of Cε,v obtained by drawing
horizontal, vertical, and both 45 degree diagonal lines through v. By symmetry, a random walk
from v is equally likely to exit through each of these 8 arcs.

The definition also applies to scalings of lattices like the triangular or hexagonal lattice, since,
for example, property (c) holds for any sequence of lattices for which the scaling limit of random
walk on the dual is Brownian motion. For the same reason, it applies a.s., for example, to the
sequence where Λn denotes the Delauney triangulation of a Poisson cloud in R2 of rate n, see [28].
The choice of 1

8 in the definition is made just for convenience; replacing it with any constant < 1
2

would give exactly the same family of lattice sequences.
For our result about partitions that are balanced up to an additive error (Theorem 22), we

require the following strengthening of this notion.

Definition 19. A uniform lattice sequence is a tuple ({Λn}, ρ, R,C1, C2), where {Λn} is sequence
of plane graphs with vertex sets V (Λn) ⊆ R2 for which there are corresponding dual plane graphs
Λ∗
n, with each vertex v ∈ V (Λ∗

n) a point in the corresponding face of Λn, and positive constants
ρ,R,C1, C2 so that, for all sufficiently large n:

(a) For any p ∈ R2, the ball BR/n(p) contains between C1 and C2 vertices of Λ∗
n,

(b) Any adjacent pair x, y ∈ V (Λ∗
n) satisfies d(x, y) <

R
n ,

(c) For any dual vertex v there is a division of the circle Cr,v of radius r ≥ R
n into arcs A1, . . . , As

each of length at most 1
82πR/n, such that the following holds for each i ∈ [s]: In a simple

random walk v = v0, v1, v2, . . . , with probability at least ρ, letting j the first index where
d(v0, vj) > ε, the straight line segment joining vj−1 with vj passes through Cr,v in Ai.

This definition is also satisfied for grids, the triangular lattice, the hexagonal lattice, or in-
deed any finite-degree, doubly-periodic connected plane graph. However, it is not satisfied for
triangulations of random point clouds, since as n → ∞, as the fluctuations in density will be too
large.
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4.2 Statement of results

In addition to lattice sequences, we will also consider a fixed bounded plane graph D that gives
the partition structure we are looking to approximate. In doing this, we will need to restrict the
infinite graphs in the lattice sequence to a reasonable bounded subgraph that falls inside D, and
we do this as follows. Let D be a bounded plane graph, and fix δ > 0 that will be chosen later
in terms of D (in Lemma 25). Given plane graph Λn with dual Λ∗

n from a lattice sequence, and a
cycle C∗ in Λ∗ at Hausdorff distance < δ from the outer face boundary of D, we let ΩD,Λn be the
subgraph of of Λn lying inside C∗. We let Ω∗

D,Λn
be the subgraph of Λ∗

n induced by all vertices of
C∗ along with the vertices of Λ∗

n lying inside C∗. In this way, we can consider the planar dual of
ΩD,Λn to be Ω∗

D,Λn
with wired boundary condition, where the entire cycle C∗ (rather than a single

dual vertex) corresponds to the outer face of ΩD,Λn . (In particular, for our proofs, we will run
Wilson’s algorithm on Ω∗

D,Λn
with the cycle C∗ identified as a single root.)

Given this plane graph D describing the partition structure we are looking to approximate, let
k + 1 be the number of faces and denote the k bounded faces by ϕ1, . . . , ϕk. We say a partition
of the graph ΩD,Λ into connected components C1, . . . , Ck is ε-compatible with D if for all i and
vertices v ∈ ΩD,Λ, the implication

v ∈ Ci =⇒ d(v, ϕi) ≤ ε (13)

holds. By subdividing edges if necessary, we will assume that D has no loops, so that γ(0) ̸= γ(1)
for all γ ∈ Γ(D).

For a lattice sequence ({Λn}, ρ) and a probability space on the set of spanning trees of ΩD,Λn

and given ε > 0, we define the event ED,Λn,ε, which holds whenever there are k − 1 edges whose
removal from T results in a forest with components C1, . . . , Ck that is ε-compatible with D. The
following is our main result for multiplicative balance (the formal version of Theorem 3).

Theorem 20. Let ({Λn}, ρ) be a lattice sequence, let D be a plane graph with k + 1 faces, and let
ΩD,Λn be as above. For the uniform probability space on the set of spanning trees of a graph ΩD,Λn,
we have that as n→∞, Pr(ED,Λn,ε) is bounded below by a constant depending only on D and ε.

As a consequence, if we draw the partition so that the parts contain approximately equal
numbers of vertices, we can conclude that random trees are splittable into approximately balanced
pieces with constant probability. This is possible so long as {Λn} has the property that for any δ > 0
and R, there is an ε > 0 so that every ε ball Bε(p) satisfies |Bε(p) ∩ V (Λn)| ≤ δ|BR(0) ∩ V (Λn)|.
In the case of grid graphs, for instance, we obtain the following corollary.

Corollary 21. Fix ε ≥ 0 and k a positive integer. Let m,n be positive integers such that n ≤ m,
k|m, and 20/n ≤ ε ≤ 1/(3k). Let G be an m× n grid graph. There is a constant C(k, ε) such that
the probability a uniformly random spanning tree of G is (k, ε)-approximately splittable is at least
C(k, ε).

As our final main result, we give 1/poly lower bound on the probability that a random spanning
tree in a square region of a uniform lattice sequence can be cut into pieces that differ in size by an
additive constant on uniform lattice sequences (the formal version of Theorem 4).

Theorem 22. Suppose ({Λn}, ρ, R,C1, C2) is a uniform lattice sequence, and for all n > N , C∗
n in

Λ∗
n is a cycle in the dual that is contained within the unit square [0, 1]2 and at Hausdorff distance

< R/n from its boundary, and ΩS
Λn

denotes the subgraph of Λn enclosd by the cycle C∗. Then there

is a constant A such that with probability at least 1
poly(n) , a uniformly random spanning tree of ΩS

Λn

can be disconnected by the removal of k − 1 edges into k components that that differ in size by at
most A.
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Note that balance up to an additive constant is the best we can hope for in the generality we
are working in here; for example, an n× n grid graph with n odd and an additional leaf appended
to every vertex is a case to which Theorem 22 applies, but that does not admit an exactly balanced
partition despite the fact that the total number of vertices is even.

4.3 Probability of staying near a curve

To prove Theorem 20, we first need the following lemma.

Lemma 23. Let ({Λn}, ρ) be a lattice sequence, let ε > 0, and let γ be a curve in the plane of
length T . For v0 ∈ Λn with d(v0, γ(0)) ≤ ε/2, and for a random walk in Λn started from v0, let
E = En,v0,ε,γ be the event that the walk reaches a point within ε

2 of γ(1) before ever reaching a vertex
at distance > ε from the curve γ. For all sufficiently large n,

Pr[En,v0,ε,γ ] ≥ ρ20T/ε

The proof is reminiscent of the proof of Lemma 17. The differences are that now we consider a
sequence of circles that the random walk must escape from rather than squares, and the direction
to which we hope it escapes will be determined by the path γ, not just always going upward (see
Figure 6).

Proof. Choose n large enough so that neighboring vertices in Λn are at distance at most ε
20 . For

any v ∈ Λn, we may partition Cε/2,v (the circle of radius ε/2 around v) into arcs A1, A2, . . . , As as
in Definition 18 (c) applied to ε

2 . For any t ∈ [0, 1] such that v is within Euclidean distance ε/2 of
γ(t) but not within Euclidean distance ε/2 of γ(1), that is,

d(v, γ(t)) ≤ ε

2
≤ d(v, γ(1)), (14)

we define A∗(v, t) to be the union of all arcs Ai such that the next time γ reaches Cε/2,v it is in the
arc Ai, that is, all arcs Ai such that

γ(inf{t′ ∈ [t, 1] | d(v, γ(t′)) = ε/2}) ∈ Ai.

Note the infimum is well-defined by (14), recalling that d(·) is Euclidean distance, not lattice
distance. We then define Lv,t to be the event that a random walk in Λn from v first crosses Cε/2,v

through A∗(v, t).
Assume that v0 is not already within ε

2 of γ(1), otherwise there is nothing to show. Then let
t1 be the first time such that d(v0, γ(t1)) = ε

2 . By property (c), we know that Lv0,0 will occur
with probability at least ρ. Assuming this happens, suppose the random walk exits to a point
v1 ∈ Λn \B ε

2
(v0) from a previous point u1 ∈ Λn ∩B ε

2
(v0), where the line segment between u1 and

v1 passes through a point a1 ∈ A∗(v0, 0) as in Figure 6. We know that the arc length along this
circle from a1 to γ(t1) is at most 1

82π
ε
2 = π

8 ε, so

d(v1, γ(t1)) ≤ d(v1, a1) + d(a1, γ(t1)) ≤ d(v1, u1) +
π

8
ε ≤ ε

20
+

π

8
ε ≤ 9

20
ε. (15)

If d(v1, γ(1)) ≤ ε
2 , we are done and have shown Pr(E) ≥ ρ. If, instead, d(v1, γ(1)) > ε

2 , then
both inequalities in (14) hold. We then let t2 > t1 be the first time (later than t1) such that
d(v1, γ(t2)) =

ε
2 and observe that, with probability at least ρ, the event Lv1,t1 will occur, at which

point the random walk will exit to some vertex v2 ∈ B ε
2
(γ(t2)). Continuing inductively until

d(vL, γ(1)) ≤ ε
2 , we see that we will continue to follow the curve γ for a sequence of L steps,
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A∗(vj−1, tj−1)

aj

γ(tj+1)

γ(1)

γ(0)

γ(tj)

vj

vL

v0

vj−1

C(ε/2, vj−1)

C(ε/2, vj)

uj

Figure 6: Illustration accompanying the proof of Lemma 23. A random walk from v0 in the dual
lattice eventually reaches a vertex vL within ε

2 of γ(1) while staying within ε of the curve γ because
each of the events Lv0,0,Lv1,t1 ,Lv2,t2 , . . . ,LvL−1,tL−1 occur. A key step of the proof is lower-bounding
the distance between γ(tj + 1) and γ(tj), which we accomplish by observing that vj is closer to
γ(tj) than γ(tj+1), since it is close to aj and the arc A∗(vj−1, tj−1) is small.

through events Lv0,0,Lv1,t1 ,Lv2,t2 , . . . ,LvL−1,tL−1 , with probability at least ρL. Observe that the
bound in (15) applies to each round, choosing aj to be the point on the circle between vj and the
previous step uj . Thus, we may bound the distance between consecutive points on the path as

d(γ(tj+1), γ(tj)) ≥ d(γ(tj+1), vj)− d(vj , γ(tj)) ≥
ε

2
− 9ε

20
=

ε

20
.

Since T is total length of the curve γ, it follows that we only need at most L = 20T
ε steps of the

correct events Lvj ,tj occurring until we reach a vertex within ε
2 of γ(1). All the while, we know

that the path is always within a ball of radius ε
2 that contains parts of γ, so it never is more than

ε away from γ. Thus, we have
Pr[E ] ≥ ρ20T/ε.

We will also require the following slightly stronger version of this lemma with some extra
conditions about how the path ends:

Lemma 24. Let ({Λn}, ρ) be a lattice sequence, let γ1, γ2 be curves in the plane of positive length,
where γ1 has length T and γ2(0) = γ1(1). For all sufficiently small ε > 0, for any v0 ∈ Λn with
d(v0, γ(0)) ≤ ε/2, and for a random walk in Λn started from v0, let E ′ = E ′n,v0,γ1,γ2 be the event that
the walk traverses an edge which intersects the curve γ2 at a point within ε/2 of γ1(1) before ever
reaching a vertex at distance > ε from the curve γ1. For all sufficiently large n,

Pr[E ′n,v0,γ1,γ2 ] ≥ ρ100T/ε+200.
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γ2

= γ2(0)

ε
2

γ1

γ1(0)

γ1(0)

ε

v0

γ′

Figure 7: Illustration accompanying the proof of Lemma 24. We apply Lemma 23 to the orange
path γ′ and ε

5 , which is the radius of the orange tube around γ′. The quantities ε
5 and 3ε

2 from
the proof are crude bounds on the width and length of the last part of the tube that must encircle
γ2(0) while staying within the blue circle of radius ε

2 .

Proof. Assume that ε is small enough so that γ2 eventually leaves B ε
2
(γ2(0)). We apply Lemma 23

with ε
5 to the path γ′ drawn in Figure 7. The path consists of 3 parts: a straight line from v0 γ1(0),

then γ1 until it enters Bε(γ2(0)), then a loop that crosses itself, encircling γ2(0) contained within
B ε

2
(γ2(0)). Then observe that E ⊆ E ′, where E is the event from Lemma 23 applied to this new

path using ε/5. This is because any random walk in Λn satisfying E stays within ε of γ1 and then
traverses a cycle of edges encircling γ2(0) while staying within ε of γ2(0). Since we chose ε such
that γ2 eventually leaves B ε

2
(γ2(0)), one of these edges must intersect γ2. We may upper bound

the length of γ′ as

T ′ ≤ ε

2
+ T +

3ε

2
= T + 2ε,

so the bound follows.

Note that when a disconnected plane graph D has bounded faces ϕ1, . . . , ϕk and satisfies the
hypotheses of Theorem 20, we can add curves to D to create a connected plane graph D′ whose
bounded faces satisfy ϕ′

i ⊆ ϕi for all i. We have then that ED′,Λn,ε ⊆ ED,Λn,ε, and thus it suffices
to prove Theorem 20 in the case where D is connected. Therefore, we assume that D is connected
for the rest of the proof.

By compactness of the curves γ ∈ Γ for the plane graph D = (V,Γ), we have the following:

Lemma 25. For 0 < δ < ε sufficiently small, we have that:

(A1) The distance between any two vertices u, v ∈ V is at least 3ε.
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(A2) If aγ denotes the last time t at which γ(t) is in the closed ball of radius ε about γ(0), and bγ
denotes the first time t at which γ(t) is in the closed ball of radius ε about γ(1), the restricted
curves γ̄ = γ|[aγ ,bγ ] are all at distance at least 3ε each other.

(A3) For any two points p, q in a common face of D and both at distance at least ε from any curve
of D, there is a curve γ (not a curve of D) joining p to q whose distance to every curve of
D is at least δ.

This is a straightforward consequence of compactness of the curves; we include a proof in the
appendix for completeness.

4.4 Multiplicative Approximate Balance

From here on, we let ε, δ be as promised by Lemma 25. We call a curve of D an outer curve if
every point of the curve lies on the boundary of the outer face, and an inner curve if no point does,
other than possibly its endpoints. Note that every curve must be one of these two types. We let
ΓI and ΓO denote set of inner curves and outer curves, respectively. Since D is connected, we can
order the inner curves of D as γI1 , . . . , γ

I
mi

such that for all ℓ, the plane graph Dℓ of D with edges

Γℓ = ΓO ∪ {γI1 , . . . , γIℓ }

and vertex set Vℓ = {{γ(x) | γ ∈ Γℓ, x ∈ {0, 1}} is connected (see Figure 8). Moreover, without loss
of generality we assume that the orientation of each curve is such that γIℓ (1) is a vertex of Γℓ−1 for
all ℓ = 1, . . . ,mi (the curves are oriented “towards the outer face”).

γI1

γI2

γI4

γI3

γI5

C∗

Figure 8: A run of the first four phases of Wilson’s algorithm approximating the first four inner
curves γI1 , γ

I
2 , γ

I
3 , γ

I
4 . Note that paths corresponding to γI2 and γI4 each are missing an edge, and in

particular, the edges present do not disconnect the interior of C∗. These missing edges are dual to
the edges in the corresponding primal spanning tree whose removal would disconnect the tree into
components approximating the faces of this drawing.
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We prove the theorem by analyzing how Wilson’s algorithm constructs spanning trees of Ω∗
D,Λn

with wired boundary conditions, where the whole boundary cycle C∗ is used as the root of Wilson’s
algorithm. In particular, it is equivalent to view Wilson’s algorithm as building a unicylic graph,
initialized with the boundary cycle of Ω∗

D,Λn
. We take advantage of the freedom to choose the starts

of loop-erased random walks afforded by Wilson’s algorithm by using the following implementation,
which determines starts by using additional random walks. We construct trees in rounds, where
for tree T j

i the subscript i denotes the phase and the superscript j denotes the step within phase

i. Within phase i, we alternate a loop-erased random walk from a vertex outside T j
i to a vertex in

T j
i that gets added to the tree to obtain T j+1

i (one step of Wilson’s algorithm) with a random walk

among the vertices in T j+1
i until a vertex outside T j+1

i is reached (choosing the starting point for
the next step of Wilson’s algorithm). Here we describe the procedure for one phase of this process;
the particular choices of source vertex and target subsets that will be useful for our purposes will
be specified below.

1. At the beginning of each phase i, we have an existing tree Ti−1 that has already been built.
(For i = 1, T0 consists of just the root vertex). We choose a source vertex v and target subset
Ui ⊆ Ti−1 for this phase, and initialize T 0

i−1 = Ti−1.

2. We begin each step of this phase with T j−1
i−1 (at the beginning of the phase, for j = 1) and a

source vertex. We do one of two things according to whether the source belongs to the tree
T j−1
i−1 :

(a) If the source vertex is not in T j−1
i−1 , we conduct a loop-erased random walk from the

source until it hits T j−1
i−1 at a vertex u. This loop-erased random walk is added to T j−1

i−1

to create T j
i−1. If u ∈ Ui this phase ends, and we set Ti = T j

i−1. Otherwise, we increment
j, and continue this phase with u as the new source vertex (we will be in case (b) next).

(b) If the source vertex is in T j−1
i−1 , we take a random walk from the source until we reach a

vertex u outside of Ti−1, and then increment j and restart this step from the vertex u
as the new source vertex, and T j

i−1 = T j−1
i−1 (we will be in case (a) next).

3. The previous loop continues until either the target is eventually hit by an instance of the
loop-erased random walk, or the entire spanning tree is completed.

Note that we can use a single random walk Wi from v /∈ Ti−1 to implement each phase of the
algorithm (with loop erasure while in case (2a), and without loop erasure while in case (2b)). In
particular, with this implementation, we have the following observation for general graphs:

Observation 26. Suppose that we run the implementation of Wilson’s algorithm above on a graph
G, and have built the tree Tℓ after the first ℓ phases.

(a) For a connected set of vertices S, if the walk Wℓ+1 begins from a vertex v ∈ S and ends phase
ℓ + 1 by hitting Tℓ for the first time at the target Uℓ+1 ⊆ S and without leaving S, then after
this phase, there is a path P in Tℓ+1 joining v to Uℓ+1.

(b) For a connected set of vertices S, suppose the walk Wℓ+1 begins from a vertex in S that is
adjacent to v ∈ Tℓ ∩ S and ends phase ℓ + 1 by hitting the target Uℓ+1 ⊆ S without leaving S.
Then after this phase, there is a path P from a vertex v′ ∈ (S ∩Tℓ) \Uℓ+1 to Uℓ+1, all of whose
vertices belong to S, and all but one of whose edges belong to Tℓ+1.
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Proof. In (a), the path P consists of loop-erased Wl+1 from v until the first time it reaches Tℓ, and
then any path within Tℓ to Uℓ+1. Both segments of this path are in Tℓ+1.

In (b), we construct the desired path backwards from Uℓ+1. We first add to P the last loop-
erased part of Wℓ+1 before it reaches Uℓ+1, corresponding to an entire step as described in Case
(a) of our implementation of Wilson’s algorithm. Note this entire path is in Tℓ+1, and it is entirely
contained in S because it is a subset of Wℓ+1 and all vertices of Wℓ+1 are in S. Let y be the first
vertex of this path. If y is the first vertex of Wℓ+1, it must be adjacent to v and adding v to the
start of this path produces a path with the desired properties with v′ = v. Otherwise, let x be
the vertex preceding y in Wℓ+1. It must be that x ∈ Tℓ+1 and there is no edge in Tℓ+1 between x
and y, as x is the penultimate vertex in a step (as described in case (b) of our implementation of
Wilson’s algorithm) of Wℓ+1 that is entirely contained in Tℓ+1 until its last vertex, y, is (at that
point) outside Tℓ+1. Because Wℓ+1 doesn’t reach Uℓ+1 until after it visits v′, and there must be
some component of S ∩ Tℓ in the same component of Tℓ+1 as x because otherwise x wouldn’t have
been added to Tℓ+1, it follows that x is in the same component of Tℓ+1 ∩ S as some other vertex
v′ ∈ (S ∩ Tℓ) \ Uℓ+1. We then let path P consists of the path from v′ to x in Tℓ+1 ∩ S, the edge
{x, y}, and the final loop-erased part of Wℓ+1 from y to Uℓ+1. All vertices of this path are in S,
and all edges except {x, y} are in Tℓ+1.

In particular, applied to our situation, using as S the set of vertices close to a given curve, we
obtain the following:

Observation 27. Suppose that we run the implementation of Wilson’s algorithm above on the dual
graph Ω∗

D,Λn
, and have built the tree Tℓ after the first ℓ phases. Then:

(a) If the walk Wℓ+1 begins from a vertex v and ends phase ℓ + 1 by hitting Tℓ for the first time
at the target Uℓ+1 = Tℓ ∩ B(δ, γℓ+1(1)) while also staying within distance δ of the curve γℓ+1,
then after this phase, there is a path P in Tℓ+1 joining v to Uℓ+1 whose vertices are all within
distance δ from the curve γℓ+1.

(b) Suppose the walk Wℓ+1 begins from a vertex adjacent to a vertex v ∈ Tℓ∩B(δ, γℓ+1(0)) and ends
phase ℓ+ 1 by hitting the target Uℓ+1 = Tℓ ∩B(δ, γℓ+1(1)) while also staying within distance δ
of the curve γℓ+1 throughout the phase. Suppose all vertices of Tℓ that are within δ of the curve
γℓ+1 are in either B(δ, γℓ+1(0)) or B(δ, γℓ+1(1)). Then after this phase, there is a path P in
the dual graph joining some vertex in Tℓ ∩ B(δ, γℓ+1(0)) to Uℓ+1 whose vertices are all within
distance δ from the curve γℓ+1, and such that all but at most one edge of P belongs to the tree
Tℓ+1.

Proof. This follows from Observation 26, with G = Ω∗
D,Λn

and S to be all the vertices of Ω∗
D,Λn

within distance δ of the curve γℓ+1.

Using Observation 27, we complete the proof as follows. For a plane graph D, let f(D) be the
number of interior faces of D. We say a (not-necessarily-spanning) tree T in the dual graph Ω∗

D,Λn

δ-corresponds to a plane graph D with inner curves γI1 , . . . , γ
I
ℓ if there are paths P1, . . . , Pℓ, such

that for each i:

(a) Pi and Pj intersect if and only if γIi and γIj share a common endpoint.

(b) For any point p, if γIi1 , . . . , γ
I
is

are all the curves of D that have p as an endpoint, then the
union of the paths Pi1 , . . . , Pis is a tree.

(c) Every vertex of Pi is within distance δ of the curve γIi .
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(d) For f(D)− 1 of the paths, all but one edge of Pi belongs to the tree T , while for the rest of the
paths, the whole path belongs to T . Here f(D) is the number of faces of D.

We then have the following lemma, which applies to each plane graphDℓ in the sequence constructed
above.

Lemma 28. Let T be a tree in the dual graph Ω∗
D,Λn

, and let HT be the spanning subgraph of
the primal graph ΩD,h obtained by removing from ΩD,Λn all the edges e for which e∗ ∈ T . If
T δ-corresponds to Dℓ, then there are f(Dℓ) − 1 edges of H whose removal results in connected
components C1, . . . , Ck whose induced partition of ΩD,Λn is ε-compatible with Dℓ.

Let us first use Lemma 28 and induction on the sequence of plane graphs Dℓ to prove the
Theorem. Initially, tree T0 consisting of just the root vertex of Ω∗

D,Λn
(equivalently, of just the

wired boundary cycle of Ω∗
D,Λn

) trivially δ-corresponds to the plane graph D0 with no interior
curves. Having already constructed a tree Tℓ−1 that δ-corresponds to Dℓ−1, we begin another
phase of Wilson’s algorithm from a vertex v ∈ ΩD,Λn . If Tℓ−1 ∩ B(δ, γIℓ (0)) = ∅, we begin from
a vertex v at minimum distance from γIℓ (0) (call this Case A), and note v will not be in Tℓ−1.
Otherwise, if Tℓ−1 ∩B(δ, γIℓ (0)) = ∅, we begin at a vertex v adjacent to any vertex in this set (Case
B). In both cases, we use the target Uℓ = Tℓ−1 ∩ B(δ, γIℓ (1)). Note that when γIℓ (1) is incident
on the outer face of D, the target Uℓ contains a portion of the boundary cycle of Ω∗

D,Λn
within

distance δ of γIℓ (1). By Lemma 24, with constant probability, the walk Wℓ for this phase will hit
the target Uℓ while staying within distance δ of γIℓ . Thus, by Observation 27, and the fact that we
are in Case A instead of Case B if and only if f(Dℓ) = f(Dℓ−1) (as in Euler’s formula), at the end
of the phase, the tree Tℓ δ-corresponds to Dℓ.

In particular, after phase ℓ = mi (recall mi is the total number of interior curves in D) we have
that with constant probability, our tree Tmi consists only of the root and vertices within distance δ
of the internal curves of D, and that there is a collection of paths P1, . . . , Pmi satisfying properties
(a),(b),(c),(d) above, and additionally that all but precisely f(D)− 1 = k − 2 of the paths belong
entirely to three Tmi .

From here, we complete Wilson’s algorithm with arbitrary choices for starting vertices to pro-
duce a final tree T , which still contains all but at most one edge of each path Pi, and the whole
path in all but precisely k − 1 cases. In particular, in the primal graph, the tree T corresponds to
a tree from which k − 1 edges can be deleted, to produce a partition that is ε-compatible with the
drawing D.

It remains to prove Lemma 28.

Proof of Lemma 28. Let k = f(Dℓ) and let the paths P1, . . . , Pℓ be as in the definition of δ-
correspondence. Note the lemma is trivial if k = 1, so we assume k > 1. If we remove all the
edges e from ΩD,Λn for which e∗ ∈ T , the result is a connected spanning subgraph of of ΩD,Λn and
thus removing any additional k−1 edges results in graph with at most k components. Thus, to prove
the Lemma, it suffices to show that if we remove all edges e from ΩD,Λn for which the corresponding
e∗ belong to any of the paths Pi, the resulting graph contains k components C1, . . . , Ck that induce
a partition that is ε-compatible with Dℓ. Indeed, if after removing the edges of these paths, we
then remove the whole tree, we are still left with the same connected components C1, . . . , Ck, by
(d).

This is easy to show if we know that as a plane graph, the union of P1, . . . , Pℓ has the same
number of faces as D. Indeed, any two points that belong to a common face of D and lie at distance
greater than ε from every other face must be joined by a curve which is at distance greater than δ
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from every curve in D by condition (A3) as ensured by our choice of ε, δ via Lemma 25, and thus
disjoint the union of the paths P1, . . . , Pℓ, by (c).

To check the number of faces of the union of P1, . . . , Pℓ, note that for each vertex of p of D, we
have from (a) and (b) that the union of the paths {Pi} corresponding to curves γi ∈ Γ(D) incident
to p form a tree. By our choice of δ, ε in (A1), (A2), (A3) and (c), we have that all vertices which
belong to more than one of the Pi of this tree lie within distance δ of p. Thus we can define a tree
τp which is a union of one segment from each Pi, in each case containing an endpoint of Pi, such
that the whole tree τp lies within distance δ of the point p. Considering the union of all of these τp
as a plane graph, it has |V (D)| connected components and a single face.

Each path P1, . . . , Pℓ consists of two end segments which belong to trees τp, τq, and a middle
segment which joins two such trees. Note that no two middle segments intersect, by (c) and the
choice of δ. In particular, when we add these middle segments to our drawing one-by-one, at each
step we decrease the number of components or increase the number of faces, as in Euler’s formula.
As the same is true when we add curves γi to build D one curve at a time, the two drawings have
precisely the same number of faces.

Corollary 21 now follows with some additional observations about how the parameters of The-
orem 20 applies to grids.

Proof of Corollary 21. Let D be the plane graph consisting of a unit rectangle divided vertically
into k even pieces. Consider the lattice sequence ({Λi}, 1/8) that has Λi = (1/i)(nZ ×mZ). This
is a valid lattice sequence by Definition 18.

Note Λmn is the graph (1/m)Z× (1/n)Z), and it is on this graph we focus. In this case, ΩD,Λmn

can be chosen to be exactly the m × n grid graph. Note that, as ε > 1/m > 1/n, conditions (a),
(b), and (c) of Definition 18 hold for Λmn, indicating that mn is sufficiently large for our purposes.

The proof of Lemma 23 assumes the stronger condition that neighboring vertices are at distance
at most ε/20; this holds for Λmn by the hypothesis ε ≥ 20/n. Provided ε ≤ 1/(3k), Lemma 25
holds for ε and any δ < ε, for example for δ = ε/2.

Therefore the proof of Theorem 20 applies, not just in the limit of the lattice sequence ({Λi}, 1/8),
but already to the lattice Λmn. The length of all interior curves in D is k− 1, a constant, implying
that for a uniformly random spanning tree of Λmn, the probability there are k − 1 edges whose
removal results in a forest that is ε-compatible with D only depends on k and ε.

4.5 Additive Approximate Balance

We now turn to the proof of Theorem 22. We begin by observing several useful facts implied by
the definition of a uniform lattice sequence.

Observation 29. Let ({Λn}, ρ, R,C1, C2) be a uniform lattice sequence. There exist positive con-
stants cmin, cmax such that, for all sufficiently large w, h, n, any w

n ×
h
n rectangle contains between

cmin · w · h and cmax · w · h vertices in Λn.

Proof. Let n be large enough so that the conditions of Definition 19 apply, and let h,w ≥ 4R.
This rectangle contains at least ⌊w/(2R)⌋ × ⌊h/(2R)⌋ disjoint circles of radius R/n placed

in an evenly-spaced grid, and each must contain at least C1 points. Note when w ≥ 4R, then
⌊w/(2R)⌋ ≥ w/(2R) − 1 ≥ w/(2R) − w/(4R) = w/(4R), and the same is true for h. Therefore
the number of points in this rectangle is least C1⌊w/(2R)⌋⌊h/(2R)⌋ ≥ C1

(
w
4R

) (
h
4R

)
. Picking

cmin = C1/16R
2 ensures the desired lower bound is true.

This rectangle can be completely covered by the union of ⌈w/R⌉×⌈h/R⌉ balls of radius of R/n
placed in an evenly-spaced grid. As each ball contains at most C2 vertices, the number of vertices
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in this box is at most ⌈w/R⌉ · ⌈h/R⌉ · C2 ≤
(
2w
R

) (
2h
R

)
C2. Picking cmax = 4C2/R

2 ensures the
desired upper bound is true.

Given cmin and cmax, which depend only on the uniform lattice sequence, we define constants

c1 := 1−
(

1

50
· cmin

cmax

)
,

c2 :=
1

50
· cmin

cmax
.

Term c1 is meant to describe the rate at which a sequence of rectangles constructed in the proof
are shrinking. Term c2 is meant to describe the width of the interval through which we must leave
each rectangle we consider. While c1 = 1 − c2, this is simply a consequence of trying to choose
constants that are convenient to work with; we will continue to use c1 and c2 in accordance with
their conceptual meanings, as just described, rather than substituting one for another.

Observation 30. Let ({Λn}, ρ, R,C1, C2) be a uniform lattice sequence, and let cmin, cmax, c1, c2 be
as above. There exist positive constants R′, R′′ρ′, ρ′′ such that the following hold for all sufficiently
large n.

(B1) Observation 29 holds for any w, h ≥ (1−c1)R′

2 .

(B2) R′ ≥ 50R.

(B3) R′ ≥ c1
1−c1

R.

(B4) The distance between any two adjacent vertices in Λn is at most R′

2n (1− c1).

(B5) A random walk in Λn begun from the point in a 2(1−c1)R′

n × (5−c1)R′

2n rectangle that is horizontally-

centered and at distance 2R′

n from the top will first leave the rectangle along the top with
probability at least ρ′.

(B6) For any w ≥ 2(1−c1)R
′ and h ∈ [w−2R,w], a random walk in Λn begun from the center of a

w
n ×

h
n rectangle will first leave to a vertex above any given segment of the top of the rectangle

of width 2c2w
n with probability at least ρ′.

(B7) With probability at least ρ′′, a random walk in Λ∗
n begun from the center v of a circle of radius

at least R′′

n first exits the circle to a point v′ such that the ray from v to v′ passes through the
arc of angle π

6 that is centered at the top of the circle.

Proof. Because Observation 29 holds whenever w, h ≥ 4R, (B1) holds whenever R′ is chosen large
enough so that R′ ≥ 400Rcmax/cmin. Choosing R′ this large also suffices to imply (B2) and (B3).
And (B4) follows immediately from axiom (b) in the definition of a uniform lattice sequence; we
only bother to state this weaker bound here because we will use it later.

Note that (B5) is just a claim about random walk in a finite subgraph induced by the vertices
in the given rectangle, and so would hold if we knew this finite graph was connected. Although
connectivity of this subgraph does not hold in general, we can deduce (B5) by repeated applications
of part (c) of the definition of uniform lattice sequence, with r = R/n. Property (c) implies that,
with positive probability, we exit such such a circle for the first time closer to the top and further
from the left side, and also with positive probability, closer to the top and further from the right
side. Repeated applications thus give that we exit the given rectangle at the top. (B6) follows from
a similar argument, choosing a constant number of circles of radius c2w

2n .
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Likewise, (B7) is another strengthening of property (c) from the definition of a uniform lattice
sequence, with a specific region of the circle identified. It is not a direct consequence of property
(c) for the same radius R

n and probability ρ, but it is straightforward to get such a guarantee for
larger R′′ > R by using a small constant number of circles of radius R

n .

Proof of Theorem 22. We show that there is a 1/poly(n) probability that a random spanning tree
of ΩS

Λn
can be cut into pieces differing in size by an additive constant by examining the probability

the tree resembles a particular plane partition consisting of the unit square divided into k vertical
pieces. For each n, we may use a slightly different vertical partition, chosen to ensure equal numbers
of vertices in each region.

Consider ΩS
Λn

. We draw k − 1 vertical lines L1, L2, . . . , Lk−1 to partition the unit square into

k vertical strips each containing exactly the same number of vertices of ΩS
Λn

, up to an error of

±1 (which is only necessary because the number of points in ΩS
Λn

may not be divisible by k). We
can find the location of each Li by sweeping from left to right until we have the correct number
of points. (If necessary, we can first perturb the embedding slightly so that no two vertices are
vertically aligned.) Observe that there is an absolute bound on how close these lines can be to each
other and to the left and right sides of the unit square for all sufficiently large n. This is because
Observation 29 implies that if one strip has area cmax

cmin
times the area of another one, it definitely

contains more vertices. So let d0 > 0 be such that the horizontal distance between all vertical lines
is at least 2d0. Let ε := 4(1− c1)

2d20 < d0.
We run the ordinary version of Wilson’s algorithm (not the modified version described in Sec-

tion 4.4), initiating the first k − 1 random walks W1,W2, . . . ,Wk−1 from the bottom of the unit
square, lower-bounding the probability each walk Wi makes it to the top while roughly following
Li. Figure 9 depicts a typical walk satisfying these properties, as well as several of the geometric
objects described shortly in the proof to aid in the probability analysis.

Each walk Wi starts with a short segment βi from a dual vertex adjacent to the boundary cycle
C∗
n and proceeds inward, reaching a distance of at least R

n + R′

n above the bottom of the unit square
while staying within ε of Li, as depicted in the bottom-left of Figure 9. From the definition of
a uniform lattice sequence, it is straightforward to see that such a path must exist, and all such
paths must have constant length. Since uniform lattice sequences have at most a constant degree
at every vertex, there is a constant probability that Wi takes path βi.

From there, we next claim that there is a 1
poly(n) probability that Wi reaches a point within ε

2

of the point labeled γ(0) in Figure 9, which is the point on Li of distance ε+ R
n from the bottom

of the unit square. We repeatedly apply (B7) to a sequence of circles of exponentially increasing
radius. Each circle is centered at the current position of the walk (the bottom three green points
in Figure 9) and extends downward to be tangent to the horizontal line which is a distance of R

n
to the bottom of the unit square, ensuring that the walk does not hit the boundary cycle C∗

n. At
each step, the walk leaves the circle within the top arc of angle π

6 with probability at least ρ′′, thus
increasing its vertical distance from the R

n line by a multiplicative factor of 1 + cos(π/12) while
remaining within the shaded triangular region, which is defined to have bottom angle π/6 and
contain the initial vertex. After

s(n) :=
log(nε/R′′)

log(1 + cos(π/12))

circles, the elevation will have increased from its initial value of R′′

n to ε, at which point it is clear
from Figure 9 that the walk must have visited some point within the red circle around γ(0) of
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v0

v2

v1

v3

v4

v5

vL

L1

γ(0)

hL

h0

w0

1

ε

ε

R/n
R′′/nβi

π
6

d0

Figure 9: Illustration accompanying the proof of Theorem 22, which gives an inverse polynomial
lower bound on the probability of the first k − 1 walks of Wilson’s algorithm follow paths like the
windy thin black line on the right. In this diagram, we suppose k = 2 and there is roughly uniform
density of dual vertices in the graph. Thus, there is only one such path, and it is supposed to split
the unit square (which is the boundary of the figure, but also extending beyond the dashed line to
the right) in two equal-area pieces. Parts of the path are magnified on the left. The dashed red
curve is an erased loop, which we assume was traversed clockwise before continuing on the black
path. The figure is drawn to-scale with the following parameters from the proof: c1 = 7

8 , c2 = 1
8 ,

c3 = 1.8, d0 = 1
4 , L = 6, ε = 1

256 ,
R
n = R′

n = 1
2048 ,

R′

n = 1
16 . Aside from c1 being too small and c2

being too large, these are all valid values for the parameters.
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radius ε
2 . This happens with probability at least

(ρ′′)s(n) = Ω

(
1

poly(n)

)
.

As soon as this happens, we apply Lemma 23 (which is valid as a uniform lattice sequence is indeed
a lattice sequence) to the curve beginning at γ(0) and proceeding upward to conclude that Wi stays
within a radius of ε of Li until it is at a distance of d0 from the top of the unit square with constant
probability. Let us call the total probability of all of these events occurring p0(n), which we have

shown is Ω
(

1
poly(n)

)
.

At this point, Wi has reached the vertex v0 in Figure 9; this is the first vertex encountered
in Wi that is of distance at most d0 from the top. More generally, letting dj := (c1)

jd0, for each
j = 1, 2, . . . let vj be the first vertex encountered in Wi that is of distance at most dj from the
top, assuming Wi makes it that far. At each step, there is a non-self-intersecting path Pi,j from
the start of Wi to vj that will define the ultimate partition of the dual tree assuming parts of it
are not erased. Let imb(j) denote the imbalance of the partition of the vertices of ΩS

Λn
obtained

by extending Pi,j straight upward until it his the top of the unit square. Here imbalance is defined
as the difference between the number of vertices on the left side and the target size of i

k

∣∣ΩS
Λn

∣∣.
Assuming Wi makes it to each vertex vj , we let Sj be the rectangle centered at vj with width

wj := 2(1− c1)dj and height hj := 2(1− c1)dj − 2ej , where ej is the difference between dj and the
vertical distance between vj and the top of the unit square, which is at most dj . For convenience,
we define vj , wj , hj , and Sj for j = −1,−2 as well, in the obvious way. Note that vj and Sj will
still be contained within the unit square since we know d0 < 1

2 . We prove the following claim by
induction on j:

Claim 4. Let 0 ≤ j ≤ L, where L is such that dL = (c1)
Ld0 ≥ R′

n . With probability at least
p0(n)(ρ

′)j, all of the following events jointly occur:

(C1) The walk Wi eventually reaches a first vertex vj that is distance at most dj from the top.

(C2) Each of v0, v1, . . . , vj are within

ε′j := ε+

(
1

4
+ c2

)
(w0 + w1 + w2 + · · ·+ wj−1)

of line Li.

(C3) Each vertex encountered so far in Wi has been within ε′L + w0 of Li.

(C4)

|imb(j)| ≤ cmaxn
2

(
c2wj−1dj + wj−2hj−2 + wj−1

(
hj−1 +

R

n

))
.

(C5) For any vertex v previously visited by Wi within rectangle Sj, the sub-path of Pi,j from v to
vj stays within Sj−1 until reaching vj.

For the base case (j = 0), we have already noted that the walk makes it to v0 while staying
within the more stringent bound of ε with probability at least p0(n). This satisfies (C1), (C2), and
(C3). When this happens, the maximum possible magnitude of imbalance is bounded by the initial
imbalance of one plus the number of vertices in the ε-neighborhood of Li, which is a rectangle of
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dimensions 2ε× (1− d0 + e0). Assuming n is sufficiently large so that Observation 29 applies, we
may thus bound the absolute value of the imbalance by

1 + cmax(2εn)((1− d0 + e0)n) = 1 + 2cmaxn
2 · 4(1− c1)

2d20 · (1− d0 + e0)

≤ 2cmaxn
2w0h0 ≤ cmaxn

2(w−2h−2 + w−1h−1),

which establishes (C4). Finally, (C5) holds by the proof of Lemma 23, that is, the way in which
we’ve assured that our walk is staying within ε of line Li. This proof uses balls of small radius at
most ε/2 = 2(1−c1)

2d20 and bounds the probability the walk always makes progress toward a point
further along Li, that is, a point higher up along Li. If such a path went below the bottom of S−1,
it would have had to backtrack through several circles of radius at most ε/2 (which is much smaller
than h−1 = c−1

1 d0) in the wrong direction, and the fact that it does not do so is already captured
by our probability p0(n). This concludes the base case j = 0.

For the inductive case, suppose the statement holds for j − 1. Suppose the random walk Wi

has just reached vertex vj−1 in a way that satisfies all five properties (C1-5), which happens with
probability at least p0(n)(ρ

′)j−1. We have from (B6) that, with probability at least ρ′, Wi will
next leave Sj−1 to a vertex within horizontal distance c2

wj

n of any given target t within the top of
Sj−1. Since p0(n)(ρ

′)j−1 · ρ′ = p0(n)(ρ
′)j , it suffices to show that there is some target t (that is, an

x-coordinate) for which this event implies (C1-5) hold after step j.
Consider how imb(j) changes as we vary t. Recall the imbalance is calculated by extending

Pi,j straight upward until it hits the top of the unit square. We first focus on the contribution to
the change in the imbalance from this extension of Pi,j from vj to the top of the unit rectangle.
Specifically, if we change t to be 1

4wj−1 to the left or right, applying Observation 29 to the rectangle
above vj to the top of the unit square, we know the imbalance will change by at least

cminn
2 · 1

4
wj−1

(
dj − 2

R

n

)
.

Here the −2R
n comes from the fact that the height of the precise rectangle we choose is shorter by

up to R
n on the bottom because that is how far vj might be above the top of Sj−1, and shorter by

R
n on the top because the vertices in Λn within the top band of height R

n might contain vertices
that are outside of the boundary cycle C∗. Using (B2), we know that

dj ≥ dL ≥
R′

n
≥ 50

R

n
,

so it follows that a lower bound on the imbalance change is given by

cminn
2 · 1

4
wj−1

(
dj − 2

R

n

)
≥ 1

4
· 48
50
· cminn

2wj−1dj =
6

25
cminn

2wj−1dj .

On the other hand we are assuming the previous absolute imbalance is

|imb(j − 1)| ≤ cmaxn
2

(
c2wj−2dj−1 + wj−3hj−3 + wj−2

(
hj−2 +

R

n

))
≤ cmaxn

2

(
c2wj−2dj−1 + wj−3 · 2(1− c1)dj−3 + wj−2

(
2(1− c1)dj−2 +

R

n

))
= cmaxn

2

(
1

c21
c2wj−1dj +

2(1− c1)

c51
wj−1dj +

1

c21
wj−1

(
2(1− c1)dj−1 + c1

R

n

))
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From how c1 was chosen, we know, for example, that 1/c21 ≤ 1/c51 ≤ 2:

≤ cmaxn
2

(
2c2wj−1dj + 4(1− c1)wj−1dj + 2wj−1

(
2(1− c1)dj + c1

R

n

))

Since (B3) implies c1
R
n ≤ (1− c1)

R′

1 ≤ (1− c1)dL ≤ (1− c1)dj , we see this is

≤ cmaxn
2 (2c2wj−1dj + 4(1− c1)wj−1dj + 2wj−1 (3(1− c1)dj))

= cmaxn
2wj−1dj (2c2 + 10(1− c1))

= cmaxn
2wj−1dj

(
cmin

25cmax
+

cmin

5cmax

)
(from how c1 and c2 were chosen)

=
6

25
cminn

2wj−1dj .

Thus, there must be some target t in the middle half of the top boundary of Sj−1 for which the
imbalance contribution of vertices within dj − ej of the top of the unit square exactly cancels out
imb(j − 1) (up to a single vertex, perhaps). In other words, if Wi were to proceed from vj−1 to
a vertex vj with x-coordinate exactly at the target t, taking a path that went straight upward to
the top of Sj−1, then horizontally along the top of the square, then straight up to vj , the partition
would be balanced up to one vertex. However, the path it takes through Sj−1 can introduce further
imbalance of the following magnitudes:

• An imbalance of at most cmaxn
2c2wj−1dj coming from the fact that Wi might exit Sj−1 a

distance of up to ±c2 slightly to either side of the target t. (If there is a one-vertex imbalance
from before, it can be accounted for in this term as well.)

• An imbalance of cmaxn
2wj−1(hj−1 + ej) ≤ cmaxwj−1

(
hj−1 +

R
n

)
coming from the fact that

we can make an arbitrary partition of the vertices in Sj−1, where the ej term accounts for
including the vertices above Sj−1 and below vj .

• An imbalance of cmaxn
2wj−2hj−2 coming from loop erasures that affect the previous rectangle

Sj−2 as well. For example, this happens in Figure 9 when the red dashed loop is erased shortly
after the walk visits v4. Though we do not need to consider any rectangles further back in the
sequence: By the inductive hypothesis of (C5), such a loop cannot extend below the bottom
of Sj−2 (which, in Figure 9, is the green rectangle centered at v3).

Summing these up, we obtain the upper bound on |imb(j)| from (C4).
The other four properties are easy to check. (C1) is immediate because points above the top of

Sj−1 are within dj of the top of the unit square. (C2) holds because we exit within a c2 fraction of
wj−1 from the target, which needs to be at most a 1

4 fraction away from the current position, so the
total additional drift left or right is at most (14 + c2)wj−1. (C3) is simply a crude upper-bound on
how far to the side any walk could have traveled while staying within the left and right boundaries
of the rectangles Sj , the biggest rectangle having width w0. For (C5), note that Sj does not overlap
with Sj−2, so any such vertex v must be in Sj−1 \ Sj−2. Hence, v must have been visited by Wi

after vj−1, so the path forward from v must first exit Sj−1 to vj . Thus, by induction, Claim 4 holds
for all 0 ≤ j ≤ L.

Returning to the proof of the theorem, we pick L so that R′

n ≤ dL ≤ 2R′

n ; let c3 ∈ [1, 2] be such

that dL = (c1)
Ld0 = c3R′

n . Then with probability p0(n)(ρ
′)L, Wi will satisfy (C1-5) with j = L.

From vertex vL, we know from (B5) that, with probability at least ρ′, Wi will continue all the
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way to the top of the unit square, hitting C∗ before exiting the top of a final 2(1−c1)R′

n × (5−c1)R′

2n
rectangle, which is shown in purple at the very top of Figure 9.2 Observe that the imbalance before
the final part of the walk starts is at most

|imb(L)| ≤ cmaxn
2

(
c2wL−1dL + wL−2hL−2 + wL−1

(
hL−1 +

R

n

))
≤ 1

c41
cmaxn

2

(
c22(1− c1)d

2
L + (2(1− c1))

2d2L + 2(1− c1)d
2
L + 2(1− c1)dL

R

n

)
≤ 1

c41
cmaxn

2

(
c22(1− c1)

4R′2

n2
+ (2(1− c1))

2 4R
′2

n2
+ 2(1− c1)

4R′2

n2
+ 2(1− c1)

2R′R

n2

)
.

Since the n2 terms cancel and c1, c2, R
′, and R are all constant, this is a constant. To bound the

additional imbalance generated from this final part of the walk, observe that the final walk stays
within a rectangle that does not overlap with SL−2. This is because the final walk starts at least

a distance of
hL−1

2 above the top of SL−2 and the distance from the start of the final walk to the
bottom of the final rectangle is

(5− c1)R
′

2n
− 2R′

n
=

R′

n
(1− c1)−

R′

2n
(1− c1) ≤

R′

n
(1− c1)− eL−1 ≤ dL−1(1− c1)− eL−1 =

hL−1

2
,

where the first inequality follows from (B4). Thus, we may bound the imbalance by applying (B1)
to just the final two rectangles. The imbalance is at most

cmaxn
2wL−1hL−1+cmax ·(5−c1)(1−c1)R

′2 ≤ cmaxn
2

(
2(1− c1)

c1
· 2R

′

n

)2

+cmax ·(5−c1)(1−c1)R
′2,

which is also a constant. Summing these imbalances, we know that the total imbalance is at most
a constant, not depending on n. Also, applying (C2) and (C3), the maximum horizontal deviation
of Wi from Li is at most

ε′L + w0 ≤ ε+

(
1

4
+ c2

) ∞∑
j=0

(c1)
jw0

+ w0

= 4(1− c1)
2d20 +

(
1

4
+ c2

)(
w0

1− c1

)
+ w0

= 4(1− c1)
2d20 +

(
1

4
+ c2

)
(2d0) + 2(1− c1)d0

≤ d0

(
4

502
+

1

2
+

2

50
+

2

50

)
≤ d0,

so by the way we chose d0, no walk will hit the left or right sides of the unit square, and no two
neighboring walks will collide with each other.

2Note that this part of the figure is a bit misleading because it appears rather large in the figure, wider than
the longer purple rectangle at the bottom. This is just due to the specific parameters we chose to make the figure
readable. As n goes to infinity, the top rectangle will actually shrink down to a point (which is necessary to get an
additive constant imbalance!) while the bottom rectangle will remain relatively the same size and shape.
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We have shown that all k−1 walks will make it to the top of the unit square and have constant
imbalance with probability at least

(
p0(n)(ρ

′)L+1
)k−1

=

(
p0(n)ρ

′
(
c3R

′

d0n

)(log(ρ′)/ log(c1))
)k−1

= Ω

(
1

p0(n)k−1nq

)
,

where

q =
(k − 1) log(ρ′)

log(c1)
.

Note that this is 1
poly(n) since p0(n) is a polynomial function of n and q is a constant that does

not depend on n. When this happens, the primal tree must be splittable into k pieces that are
balanced up to an additive constant.

5 Experiments
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Figure 10: Heatmap of likelihoods that each vertical edge of the 10 × 10 and 50 × 50 grid graph
is an exactly balanced split edge of a uniformly random spanning tree. Each pixel represents a
vertical edge. Symmetry is enforced manually; for instance, the center two vertical edges of the
10 × 10 grid are exactly the same color not by coincidence, but because the experiment was only
run for one of them, with both edges receiving the same color. 1,000,000 trials were run for each
symmetry class of edges in each graph. In the 10 × 10 grid, the number of those trials yielding
exact balance ranged from 255 (in the corners) to 3,781 (in the center). In the 50 × 50 grid, they
ranged from 0 to 50. In particular, this plot is still noisy at this number of trials.

We visualize some of the results in this paper by running computational experiments with k = 2
on 10 × 10, 50 × 50, and 100 × 100 grid graphs. By running the first random walks of Wilson’s
algorithm on the dual grid, we empirically estimate the probability of various edges being contained
in a random spanning tree and splitting it into two balanced pieces. The only concrete lower bounds
we give on these probabilities is for central edges of the grid (in Lemma 12). However, Figure 10
suggests that, even though central edges have the highest probability, similar bounds, possibly
worse by another factor of n, should apply for other edges as well.
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Figure 11: Distributions over component sizes after removing an edge from a random spanning tree
for four specific edges in the 10×10 grid. The x-axis represents the size of the component below the
edge, which can be any number between 1 and 99. Each bar represents a single value, with the one
under the dashed red line representing exact balance. All plots are on the same logarithmic scale,
with probability on the y-axis. Note that the probabilities sum to strictly less than one because
sometimes the edge is not even included in the tree. The distribution is asymmetric for the two
edges in the top row and symmetric for the edges in the middle row.

When a given edge is in the tree but does not give a balanced split, how imbalanced is it? Figure
11 shows the empirical distribution over component sizes for various edges in the 10× 10 grid. As
one can see, the most common component sizes are heavily imbalanced. Curiously though, at least
for central edges on the 10× 10 grid, being exactly balanced is more likely than being moderately
balanced. Figure 12 shows that this trend holds for 50× 50 and 100× 100 grids as well.

Comparing these figures also illustrates the main point of Corollary 21. In each histogram,
summing the area of a constant number of bars near the dashed line yields the probability that the
parts are approximately balanced. As one can see, this probability does not appear to be vanishing
as we increase the grid resolution; it should be lower-bounded by a constant.
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Figure 12: Distribution over component sizes for the central edges in the 50 × 50 and 100 × 100
grids, similar to the bottom-left histogram in Figure 11. In the 50× 50 grid, each bar (except the
ones on the very end) represents 25 possible values, and in the 100 × 100 grid they represent 101
possible values. These plots are on the same logarithmic scales and have the same numbers of bars
as in Figure 11.

Appendix

This section includes proofs omitted from the main body of the paper.

To prove Proposition 7, we will use the following propositions:

Proposition 31. For vertices u, v in a graph G with M edges, the commute time τu(v) + τv(u)
between u and v is equal to 2MRu,v, where Ru,v denotes the effective resistance between u and
v.

The above is proved, e.g., in [9]. We will use the following bound on the effective resistance of the
grid, which can be found, e.g., in Proposition 9.16 in [24]:

Proposition 32. The effective resistance between opposite corners of a k×k grid graph is at most
2 log k.

Finally we recall the following monotonicity principles for effective resistance:

Proposition 33. If G is a graph and G′ is obtained from G by adding edges and/or gluing vertices,
the effective resistance between any pair of vertices in G′ is at most the effective resistance between
the corresponding pair of vertices in G.

Proof of Proposition 7. Suppose the G is an m × n grid graph, with n ≤ m. By Propositions 6
and 31, it suffices that the effective resistance between any vertex v in the dual G∗ and the root
r corresponding to the outer face of G satisfies Rv,r ≤ 2 log n. We show this in the following way.
Let G̃ be an (m + 1) × (n + 1) grid graph. Observe that G∗ can be obtained from G̃ by gluing
all its boundary vertices (i.e., those incident with its outer face in the canonical drawing) to form
a single vertex, which is then the root r of G∗. By Proposition 33, for any vertex v ∈ G∗, an
upper bound on the effective resistance between v and r in G∗ can be obtained by considering the
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effective resistance between v and any boundary vertex in G̃. To this end, simply consider a largest
square subgrid S of G̃ which has v as its corner vertex. The opposite corner u will necessarily be a
boundary vertex of G̃. Even just in S, the effective resistance between v and u is at most 2 log n,
and thus by Proposition 33, it is at most 2 logn in G̃ as well, proving the proposition.

Proof of Lemma 8. Note every k-forest of G can be obtained by removing k − 1 edges from some
spanning tree of G. For each spanning tree, the number of ways in which to do this is exactly(
N−1
k−1

)
. This means there are at most

(
N−1
k−1

)
· sp(G) k-forests of G.

If the probability a uniformly random spanning tree of G is k-splittable is at least α, this means
there are at least α · sp(G) splittable spanning trees of G. For a splittable spanning tree, exactly
one of the ways of removing k − 1 edge produces a balanced k-forest. On the other hand, each
forest can be obtained from a spanning tree in at most(

M − (N − 1)

k − 1

)
≤ (M −N + 1)k−1

ways, since this is a bound for the number of choices for the additional k− 1 edges which belong to
a spanning tree which contains the forest. This means there are at least α · sp(G)/(M −N +1)k−1

balanced k-forests of G.
The probability a uniformly random k-forest is balanced is the number of balanced k-forests

divided by the total number of k-forests. This is at least

α · sp(G)/(M −N + 1)k−1(
N−1
k−1

)
sp(G)

≥ α

Nk−1(M −N + 1)k−1
.

Proof of Theorem 9. We will refer to each time we begin again at Step 1 as a round of this algorithm.
Note in Step 2, if there exist k − 1 edges whose removal disconnects T into k components of equal
size, this collection of edges is unique; there are never two distinct ways to divide a tree into k
components of equal size.

Correctness: Let P be a particular balanced k-partition of G. Let P1, . . ., Pk be the districts
of P . In any given round of this algorithm, the probability we sample a spanning tree that can be
divided to produce exactly P is

sp(G/P )
∏k

i=1 sp(Pi)

sp(G)
.

We then accept this sample with probability 1/s = 1/sp(G/P ). In all, the probability we sample
partition P is proportional to

∏k
i=1 sp(Pi), meaning we are sampling exactly from the spanning

tree distribution.
Runtime: In the interest of runtime, we can implement the first step by running Wilson’s

algorithm on the dual graph, with the vertex corresponding to the outer face of the grid as the root.
In this way, Wilson’s algorithm takes O(N logN) steps to produce a uniformly random spanning
tree of G. The resulting uniformly random spanning tree of the dual graph can be converted to a
uniformly random spanning tree of the grid graph in linear time, via the bijection in Lemma 5.

Step 2 can be easily implemented using a greedy approach and depth-first search, which runs
in time O(N). Creating G/P takes at most O(N) time, and computing its spanning tree count is
constant time whenever k is a constant, as G/P has only k vertices. This means the runtime of
each round of this algorithm is O(N logN) in expectation.
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The expected number of rounds until a random spanning tree of an N -vertex grid graph G is
found to be k-splittable is O(N2k−2) by our Theorem 15 when k is constant. Similarly as in the
proof of Lemma 8, a trivial upper bound on s for any G/P is

(
2N
k−1

)
= O(Nk−1), as there are at

most 2N edges in G and k−1 are in any spanning tree of G/P . This means the expected number of
rounds we must do until a k-splittable partition is returned is O(N3k−3) in expectation. Altogether,
this gives an expected running time of O(N3k−2 logN).

Proof of Theorem 10. We will refer to each time we begin again at Step 1 as a round of this
algorithm.

Correctness: The up-down walk is known to sample approximately uniformly from the k-forests
of G, and walking for longer than its mixing time ensures this is the case. The probability a given
partition P is returned is proportional to the number of k-forests whose connected components are
the districts of P , which is exactly the spanning tree distribution.

Runtime: The mixing time of the up-down walk on a graph with N vertices is O(N logN), and
each step can be implemented O(logN) amortized time [10, 1]. It then takes O(N) steps to check if
the sampled k-forest is balanced. Thus each round takes total time O(N log2N). By Theorem 2, it
takes O(N4k−4) rounds in expectation to see a balanced k-forest. Thus the total expected running
time is O(N4k−3 log2N).

Proof of Lemma 25. Let ε1 be the minimum distance between any pair of points in the finite set
V . For a curve γ, define aγ , bγ and then γ̄ as in the statement of (A2), but with ε1 in place of ε.
The images of all the curves γ̄ are compact sets, they are disjoint, and there are finitely many of
them, so there is some minimum positive distance ε2 between them.

We let ε = min(ε1, ε2)/3, and choose δ as follows. By uniform continuity of the curves, for any
γ ∈ Γ(D) there is a δγ such that for any s, t, we have that |s − t| < δγ =⇒ d(γ(s) − γ(t)) < ε.
Choose δ1 to be the minimum of the δγ , over all γ ∈ Γ.

Now, given a compact set K ⊆ R2, consider the function fK : [0, 1]2× [0, 1]2 → R where fK(x, y)
is defined to be the supremum, over all curves from x to y, of the distance between the curve and
K:

fK(x, y) = sup
γ:γ(0)=x,γ(1)=y

im(γ)∩K=∅

d(γ,K) for x, y /∈ im(γ). (16)

Note that the surpremum is over the infinite family of all curves from x to y, not over the finite
family of curves that are the subject of the Lemma. (Note that if x and y lie in different connected
components of R2 \K, we have that fK(x, y) = 0.) f is easily seen to be a continuous function of
x and y; for example, a curve from x to y can be linearly extended to nearby alternative endpoints
x′ and y′ when they are closer to x, y than K is.

Observe that if x, y /∈ K, and x, y belong to the same connected component of the open set
R2 \ K, there is a curve γ from x to y that is disjoint from K, since open connected subsets of
Euclidean space are path connected. Its image is compact and thus has positive distance from K.
This shows that when x, y belong to a common connected component of R2\K, fK(x, y) is positive.

Now fix any inner face ϕ of D and consider the case where K = Kϕ,ε is the compact set
consisting of all points in ϕ which are at distance ≥ ε from the boundary of the face. By uniform
continuity, there is a minimum value δϕ,ε of fK over all points x, y ∈ K. We can then define δ to
be, say, half the minimum of δϕ,ε over the finitely many choices for the inner face ϕ.
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